Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1877–1886 | Cite as

Analysis of a broad range of perfluoroalkyl acids in accipiter feathers: method optimization and their occurrence in Nam Co Basin, Tibetan Plateau

  • Yili Li
  • Ke Gao
  • Bu Duo
  • Guoshuai Zhang
  • Zhiyuan Cong
  • Yan Gao
  • Jianjie FuEmail author
  • Aiqian ZhangEmail author
  • Guibin Jiang
Original Paper


Perfluoroalkyl acids (PFAAs) are ubiquitous in the environment. They are prone to accumulate in organisms and have raised public attention in recent decades. Feather samples have been successfully applied as nondestructive indicators for several contaminants. However, a sophisticated analytical method for determining PFAAs in feathers is still lacking. In the present study, a series of conditions, such as the use of the solid-phase extraction cartridge type and extraction/digestion methods, were optimized for the analysis of 13 PFAAs in feathers. According to the spiked recoveries, a weak-anion exchange cartridge was chosen and the methanol was selected as the extraction solvent. In the present study, an optimized pretreatment procedure combined with high-performance liquid chromatography–electrospray ionization–tandem mass spectrometric (HPLC–ESI–MS/MS) method was established for the determination of PFAAs in feathers. The recoveries and method detection limits of the PFAAs ranged from 71 to 120% and 0.16 to 0.54 ng/g, respectively. Finally, 13 PFAAs in four accipiter feather samples from Nam Co Basin, Tibetan Plateau, were analyzed, indicating that PFOS was the predominant PFAA in accipiter feathers, with an average of 4.67 ng/g, followed by the short-chain PFAAs, PFBS and PFBA, with averages of 1.91 and 1.39 ng/g, respectively. These results partly indicated the current situation of PFAA pollution in the Nam Co Basin, especially the existence of short-chain PFAAs in this region.


PFAAs Accipiter feather Tibetan Plateau Method optimization 



This study was jointly supported by the Chinese Academy of Sciences, Grant No. XDB14030500, and the National Natural Science Foundation (21677168, 21277164, 21677116, 21477154). Last but not least, the authors thank the staff of Nam Co Station for Multisphere Observation and Research for collecting accipiter feather samples.


  1. Alava, J. J., McDougall, M. R. R., Borbor-Córdova, M. J., Calle, K. P., Riofrio, M., Calle, N., et al. (2015). Perfluorinated chemicals in sediments, lichens, and seabirds from the Antarctic Peninsula—environmental assessment and management perspectives. doi: 10.5772/60205.Google Scholar
  2. Araújo, G. C. L., Gonzalez, M. H., Ferreira, A. G., Nogueira, A. R. A., & Nóbrega, J. A. (2002). Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(12), 2121–2132. doi: 10.1016/S0584-8547(02)00164-7.CrossRefGoogle Scholar
  3. Dagnino, S. (2015). Analysis of PFASs in biological tissues and fluids. In J. C. DeWitt (Ed.), Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances (pp. 23–49). Berlin: Springer.Google Scholar
  4. Garcia-Fernandez, A. J., Espin, S., & Martinez-Lopez, E. (2013). Feathers as a biomonitoring tool of polyhalogenated compounds: A review. Environmental Science and Technology, 47(7), 3028–3043. doi: 10.1021/es302758x.CrossRefGoogle Scholar
  5. Jaspers, V. L., Herzke, D., Eulaers, I., Gillespie, B. W., & Eens, M. (2013). Perfluoroalkyl substances in soft tissues and tail feathers of Belgian barn owls (Tyto alba) using statistical methods for left-censored data to handle non-detects. Environment International, 52, 9–16. doi: 10.1016/j.envint.2012.11.002.CrossRefGoogle Scholar
  6. Jaspers, V. L., Rodriguez, F. S., Boertmann, D., Sonne, C., Dietz, R., Rasmussen, L. M., et al. (2011). Body feathers as a potential new biomonitoring tool in raptors: A study on organohalogenated contaminants in different feather types and preen oil of West Greenland white-tailed eagles (Haliaeetus albicilla). Environment International, 37(8), 1349–1356. doi: 10.1016/j.envint.2011.06.004.CrossRefGoogle Scholar
  7. Kirchgeorg, T., Dreyer, A., Gabrieli, J., Kehrwald, N., Sigl, M., Schwikowski, M., et al. (2013). Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow. Environmental Pollution, 178, 367–374. doi: 10.1016/j.envpol.2013.03.043.CrossRefGoogle Scholar
  8. Kissa, E. (1994). Fluorinated surfactants: Synthesis, properties, applications (Surfactant Science Series, Vol. 50). New York: Dekker.Google Scholar
  9. Krafft, M. P., & Riess, J. G. (1998). Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie, 80(5–6), 489–514. doi: 10.1016/S0300-9084(00)80016-4.CrossRefGoogle Scholar
  10. Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., & Seed, J. (2007). Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicological Sciences, 99(2), 366–394. doi: 10.1093/toxsci/kfm128.CrossRefGoogle Scholar
  11. Lee, W.-W., Lee, S.-Y., Yu, S. M., & Hong, J. (2012). High speed separation of PFCs in human serum by C18-monolithic column liquid chromatography–tandem mass spectrometry. Bulletin of the Korean Chemical Society, 33(11), 3727–3734. doi: 10.5012/bkcs.2012.33.11.3727.CrossRefGoogle Scholar
  12. Letcher, R. J., Bustnes, J. O., Dietz, R., Jenssen, B. M., Jorgensen, E. H., Sonne, C., et al. (2010). Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment, 408(15), 2995–3043. doi: 10.1016/j.scitotenv.2009.10.038.CrossRefGoogle Scholar
  13. Li, J., Guo, F., Wang, Y., Liu, J., Cai, Z., Zhang, J., et al. (2012). Development of extraction methods for the analysis of perfluorinated compounds in human hair and nail by high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1219, 54–60. doi: 10.1016/j.chroma.2011.11.015.CrossRefGoogle Scholar
  14. Liu, C., Gin, K. Y. H., Chang, V. W. C., Goh, B. P. L., & Reinhard, M. (2011a). Novel perspectives on the bioaccumulation of PFCs—The concentration dependency. Environmental Science and Technology, 45(22), 9758–9764. doi: 10.1021/es202078n.CrossRefGoogle Scholar
  15. Liu, W., Xu, L., Li, X., Jin, Y. H., Sasaki, K., Saito, N., et al. (2011b). Human nails analysis as biomarker of exposure to perfluoroalkyl compounds. Environmental Science and Technology, 45(19), 8144–8150. doi: 10.1021/es1036207.CrossRefGoogle Scholar
  16. Meyer, J., Jaspers, V. L., Eens, M., & de Coen, W. (2009). The relationship between perfluorinated chemical levels in the feathers and livers of birds from different trophic levels. Science of the Total Environment, 407(22), 5894–5900. doi: 10.1016/j.scitotenv.2009.07.032.CrossRefGoogle Scholar
  17. Miller, M. M. (1964). Glacio-meteorology on Mt. Everest in 1963: The Khumbu glacier of Chomolongma in Northeastern Nepal. Weatherwise, 17(4), 167–189.CrossRefGoogle Scholar
  18. Munoz, G., Giraudel, J. L., Botta, F., Lestremau, F., Devier, M. H., Budzinski, H., et al. (2015). Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey. Science of the Total Environment, 517, 48–56. doi: 10.1016/j.scitotenv.2015.02.043.CrossRefGoogle Scholar
  19. Nagai, Y., & Nishikawa, T. (2014). Alkali solubilization of Chicken Feather Keratin. Agricultural and Biological Chemistry, 34(1), 16–22. doi: 10.1080/00021369.1970.10859572.CrossRefGoogle Scholar
  20. Paul, A. G., Jones, K. C., & Sweetman, A. J. (2008). A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environmental Science and Technology, 43(2), 386–392.CrossRefGoogle Scholar
  21. Ren, J., Wang, X., Xue, Y., Gong, P., Joswiak, D. R., Xu, B., et al. (2014). Persistent organic pollutants in mountain air of the southeastern Tibetan Plateau: Seasonal variations and implications for regional cycling. Environmental Pollution, 194, 210–216. doi: 10.1016/j.envpol.2014.08.002.CrossRefGoogle Scholar
  22. Sheng, J., Wang, X., Gong, P., Joswiak, D. R., Tian, L., Yao, T., et al. (2013). Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study. Environmental Science and Technology, 47(7), 3199–3208. doi: 10.1021/es305201s.CrossRefGoogle Scholar
  23. Shi, Y., Pan, Y., Yang, R., Wang, Y., & Cai, Y. (2010). Occurrence of perfluorinated compounds in fish from Qinghai–Tibetan Plateau. Environment International, 36(1), 46–50. doi: 10.1016/j.envint.2009.09.005.CrossRefGoogle Scholar
  24. Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86, 239–243.CrossRefGoogle Scholar
  25. Surma, M., & Zielinski, H. (2015). What do we know about the risk arising from perfluorinated compounds. Polish Journal of Environmental Studies. doi: 10.15244/pjoes/30929.CrossRefGoogle Scholar
  26. Taniyasu, S., Kannan, K., So, M. K., Gulkowska, A., Sinclair, E., Okazawa, T., et al. (2005). Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. Journal of Chromatography A, 1093(1–2), 89–97. doi: 10.1016/j.chroma.2005.07.053.CrossRefGoogle Scholar
  27. Van den Steen, E., Covaci, A., Jaspers, V. L., Dauwe, T., Voorspoels, S., Eens, M., et al. (2007). Experimental evaluation of the usefulness of feathers as a non-destructive biomonitor for polychlorinated biphenyls (PCBs) using silastic implants as a novel method of exposure. Environment International, 33(2), 257–264. doi: 10.1016/j.envint.2006.09.018.CrossRefGoogle Scholar
  28. Wang, X. P., Gong, P., Sheng, J., Joswiak, D. R., & Yao, T. (2015). Long-range atmospheric transport of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau. Atmospheric Environment, 115, 124–131. doi: 10.1016/j.atmosenv.2015.04.050.CrossRefGoogle Scholar
  29. Wang, X. P., Gong, P., Yao, T. D., & Jones, K. C. (2010a). Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau. Environmental Science and Technology, 44(8), 2988–2993. doi: 10.1021/es9033759.CrossRefGoogle Scholar
  30. Wang, X. P., Halsall, C., Codling, G., Xie, Z., Xu, B., Zhao, Z., et al. (2014). Accumulation of perfluoroalkyl compounds in Tibetan mountain snow: Temporal patterns from 1980 to 2010. Environmental Science and Technology, 48(1), 173–181. doi: 10.1021/es4044775.CrossRefGoogle Scholar
  31. Wang, L., Sun, H., Yang, L., He, C., Wu, W., & Sun, S. (2010b). Liquid chromatography/mass spectrometry analysis of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in bivalve shells: Extraction method optimization. Journal of Chromatography A, 1217(4), 436–442.CrossRefGoogle Scholar
  32. Yoo, H., Washington, J. W., Jenkins, T. M., & Laurence Libelo, E. (2009). Analysis of perfluorinated chemicals in sludge: Method development and initial results. Journal of Chromatography A, 1216(45), 7831–7839. doi: 10.1016/j.chroma.2009.09.051.CrossRefGoogle Scholar
  33. Zabaleta, I., Bizkarguenaga, E., Iparragirre, A., Navarro, P., Prieto, A., Fernandez, L. A., et al. (2014). Focused ultrasound solid–liquid extraction for the determination of perfluorinated compounds in fish, vegetables and amended soil. Journal of Chromatography A, 1331, 27–37. doi: 10.1016/j.chroma.2014.01.025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Faculty of ScienceTibet UniversityLhasaPeople’s Republic of China
  4. 4.Institute of Tibetan Plateau ResearchBeijingChina

Personalised recommendations