Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1867–1876 | Cite as

Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge

  • Jian-Hao Zhang
  • Hai-Yuan Zou
  • Xun-An NingEmail author
  • Mei-Qing Lin
  • Chang-Min Chen
  • Tai-Cheng An
  • Jian Sun
Original Paper


To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H2O2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H2O2 to Fe2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaPeq) concentrations of five CPAHs declined by 81.22–85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.


Carcinogenic polycyclic aromatic hydrocarbons Textile dyeing sludge Ultrasound Fenton Central composite design 



This research was supported by the Natural Science Foundation of China (No. 21577027); Science and Technology Project of Guangdong Province, China (No. 2015A020215032); Special Applied Technology Research and Development Key Project of Guangdong Province (No. 2015B020235013); and the Science and Technology Project of Guangzhou city (No. 201607010330).

Supplementary material

10653_2017_9946_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2460 kb)


  1. An, T., An, J., Yang, H., Li, G., Feng, H., & Nie, X. (2011). Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. Journal of Hazardous Materials, 197, 229–236. doi: 10.1016/j.jhazmat.2011.09.077.CrossRefGoogle Scholar
  2. Bagal, M. V., & Gogate, P. R. (2014). Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review. Ultrasonics Sonochemistry, 21(1), 1–14. doi: 10.1016/j.ultsonch.2013.07.009.CrossRefGoogle Scholar
  3. Berberidou, C., Poulios, I., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis, B: Environmental, 74(1–2), 63–72. doi: 10.1016/j.apcatb.2007.01.013.CrossRefGoogle Scholar
  4. Bocos, E., Fernández-Costas, C., Pazos, M., & Sanromán, M. Á. (2015). Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere, 125, 168–174. doi: 10.1016/j.chemosphere.2014.12.049.CrossRefGoogle Scholar
  5. Carail, M., Fabiano-Tixier, A.-S., Meullemiestre, A., Chemat, F., & Caris-Veyrat, C. (2015). Effects of high power ultrasound on all-E-β-carotene, newly formed compounds analysis by ultra-high-performance liquid chromatography–tandem mass spectrometry. Ultrasonics Sonochemistry, 26, 200–209. doi: 10.1016/j.ultsonch.2015.04.003.CrossRefGoogle Scholar
  6. Chen, W.-S., & Su, Y.-C. (2012). Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrasonics Sonochemistry, 19(4), 921–927. doi: 10.1016/j.ultsonch.2011.12.012.CrossRefGoogle Scholar
  7. David, B. (2009). Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution. Ultrasonics Sonochemistry, 16(2), 260–265. doi: 10.1016/j.ultsonch.2008.07.013.CrossRefGoogle Scholar
  8. Feng, L., Luo, J., & Chen, Y. (2015). Dilemma of sewage sludge treatment and disposal in China. Environmental Science and Technology, 49(8), 4781–4782. doi: 10.1021/acs.est.5b01455.CrossRefGoogle Scholar
  9. Flotron, V., Delteil, C., Padellec, Y., & Camel, V. (2005). Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere, 59(10), 1427–1437. doi: 10.1016/j.chemosphere.2004.12.065.CrossRefGoogle Scholar
  10. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551. doi: 10.1016/s1093-0191(03)00032-7.CrossRefGoogle Scholar
  11. Golash, N., & Gogate, P. R. (2012). Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry, 19(5), 1051–1060. doi: 10.1016/j.ultsonch.2012.02.011.CrossRefGoogle Scholar
  12. Gong, C., Jiang, J., & Li, D. (2015). Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus. Science of the Total Environment, 532, 495–500. doi: 10.1016/j.scitotenv.2015.05.131.CrossRefGoogle Scholar
  13. Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., & Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80–89. doi: 10.1016/j.foodchem.2015.03.047.CrossRefGoogle Scholar
  14. Hou, L., Wang, L., Royer, S., & Zhang, H. (2016). Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. Journal of Hazardous Materials, 302, 458–467. doi: 10.1016/j.jhazmat.2015.09.033.CrossRefGoogle Scholar
  15. Kanthale, P., Ashokkumar, M., & Grieser, F. (2008). Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects. Ultrasonics Sonochemistry, 15(2), 143–150. doi: 10.1016/j.ultsonch.2007.03.003.CrossRefGoogle Scholar
  16. Kobayashi, D., Sano, K., Takeuchi, Y., & Terasaka, K. (2011). Effect of irradiation distance on degradation of phenol using indirect ultrasonic irradiation method. Ultrasonics Sonochemistry, 18(5), 1205–1210. doi: 10.1016/j.ultsonch.2011.01.010.CrossRefGoogle Scholar
  17. Lai, B., Chen, Z., Zhou, Y., Yang, P., Wang, J., & Chen, Z. (2013). Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). Journal of Hazardous Materials, 250–251, 220–228. doi: 10.1016/j.jhazmat.2013.02.002.CrossRefGoogle Scholar
  18. Lan, R.-J., Li, J.-T., Sun, H.-W., & Su, W.-B. (2012). Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation: Optimization using response surface methodology. Water Science and Technology, 66(12), 2695. doi: 10.2166/wst.2012.508.CrossRefGoogle Scholar
  19. Li, J.-T., & Song, Y.-L. (2009). Degradation of AR 97 aqueous solution by combination of ultrasound and Fenton reagent. Environmental Progress and Sustainable Energy. doi: 10.1002/ep.10375.CrossRefGoogle Scholar
  20. Lin, M., Ning, X.-A., An, T., Zhang, J., Chen, C., Ke, Y., et al. (2016). Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study. Journal of Hazardous Materials, 307, 7–16. doi: 10.1016/j.jhazmat.2015.12.047.CrossRefGoogle Scholar
  21. Lundstedt, S., Persson, Y., & Oberg, L. (2006). Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere, 65(8), 1288–1294. doi: 10.1016/j.chemosphere.2006.04.031.CrossRefGoogle Scholar
  22. Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. doi: 10.1016/s0304-3894(02)00282-0.CrossRefGoogle Scholar
  23. Ning, X.-A., Chen, H., Wu, J., Wang, Y., Liu, J., & Lin, M. (2014a). Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability. Chemical Engineering Journal, 242, 102–108. doi: 10.1016/j.cej.2013.12.064.CrossRefGoogle Scholar
  24. Ning, X.-A., Liang, J.-Y., Li, R.-J., Hong, Z., Wang, Y.-J., Chang, K.-L., et al. (2015). Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Chemosphere, 134, 367–373. doi: 10.1016/j.chemosphere.2015.05.015.CrossRefGoogle Scholar
  25. Ning, X.-A., Lin, M.-Q., Shen, L.-Z., Zhang, J.-H., Wang, J.-Y., Wang, Y.-J., et al. (2014b). Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Environmental Research, 132, 112–118. doi: 10.1016/j.envres.2014.03.041.CrossRefGoogle Scholar
  26. Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. doi: 10.1016/0273-2300(92)90009-X.CrossRefGoogle Scholar
  27. Oturan, M. A., Sirés, I., Oturan, N., Pérocheau, S., Laborde, J.-L., & Trévin, S. (2008). Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Journal of Electroanalytical Chemistry, 624(1–2), 329–332. doi: 10.1016/j.jelechem.2008.08.005.CrossRefGoogle Scholar
  28. Özdemir, C., Öden, M. K., Şahinkaya, S., & Kalipçi, E. (2011). Color removal from synthetic textile wastewater by sono-Fenton process. CLEAN—Soil, Air, Water, 39(1), 60–67. doi: 10.1002/clen.201000263.CrossRefGoogle Scholar
  29. Pera-Titus, M., García-Molina, V., Baños MA, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis, B: Environmental, 47(4), 219–256. doi: 10.1016/j.apcatb.2003.09.010.CrossRefGoogle Scholar
  30. Psillakis, E., Goula, G., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 108(1–2), 95–102. doi: 10.1016/j.jhazmat.2004.01.004.CrossRefGoogle Scholar
  31. Usman, M., Faure, P., Ruby, C., & Hanna, K. (2012). Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Applied Catalysis, B: Environmental, 117–118, 10–17. doi: 10.1016/j.apcatb.2012.01.007.CrossRefGoogle Scholar
  32. Virkutyte, J., Vičkačkaite, V., & Padarauskas, A. (2009). Sono-oxidation of soils: Degradation of naphthalene by sono-Fenton-like process. Journal of Soils and Sediments, 10(3), 526–536. doi: 10.1007/s11368-009-0153-2.CrossRefGoogle Scholar
  33. Wang, C., & Liu, C. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. Journal of Environmental Sciences, 26(6), 1332–1339. doi: 10.1016/s1001-0742(13)60608-7.CrossRefGoogle Scholar
  34. Wang, X., Wei, Y., Wang, J., Guo, W., & Wang, C. (2012). The kinetics and mechanism of ultrasonic degradation of p-nitrophenol in aqueous solution with CCl4 enhancement. Ultrasonics Sonochemistry, 19(1), 32–37. doi: 10.1016/j.ultsonch.2010.12.005.CrossRefGoogle Scholar
  35. Watts, R. J., Stanton, P. C., Howsawkeng, J., & Teel, A. L. (2002). Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Research, 36(17), 4283–4292. doi: 10.1016/S0043-1354(02)00142-2.CrossRefGoogle Scholar
  36. Weng, C.-H., Lin, Y.-T., & Yuan, H.-M. (2013). Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Separation and Purification Technology, 117, 75–82. doi: 10.1016/j.seppur.2013.03.047.CrossRefGoogle Scholar
  37. Yang, G.-P., Zhao, X.-K., Sun, X.-J., & Lu, X.-L. (2005). Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. Journal of Hazardous Materials, 126(1–3), 112–118. doi: 10.1016/j.jhazmat.2005.06.014.CrossRefGoogle Scholar
  38. Yap, C. L., Gan, S., & Ng, H. K. (2011). Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 83(11), 1414–1430. doi: 10.1016/j.chemosphere.2011.01.026.CrossRefGoogle Scholar
  39. Zhang, J., Li, J., Thring, R., & Liu, L. (2013). Application of ultrasound and Fenton’s reaction process for the treatment of oily sludge. Procedia Environmental Sciences, 18, 686–693. doi: 10.1016/j.proenv.2013.04.093.CrossRefGoogle Scholar
  40. Zhong, X., Xiang, L., Royer, S., Valange, S., Barrault, J., & Zhang, H. (2011). Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation. Journal of Chemical Technology and Biotechnology, 86(7), 970–977. doi: 10.1002/jctb.2608.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jian-Hao Zhang
    • 1
  • Hai-Yuan Zou
    • 1
  • Xun-An Ning
    • 1
    Email author
  • Mei-Qing Lin
    • 1
  • Chang-Min Chen
    • 1
  • Tai-Cheng An
    • 1
  • Jian Sun
    • 1
  1. 1.School of Environmental Science and Engineering, Institute of Environmental Health and Pollution ControlGuangdong University of TechnologyGuangzhouChina

Personalised recommendations