Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 1, pp 521–542 | Cite as

Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal)

  • I. M. H. R. Antunes
  • A. M. R. Neiva
  • M. T. D. Albuquerque
  • P. C. S. Carvalho
  • A. C. T. Santos
  • Pedro  P. Cunha
Original Paper

Abstract

The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41–186 µS/cm; TDS = 33–172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H2(AsO4) and H(AsO4)2−. Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH)3(CO3), Th(OH)2(CO3) and Th(OH)2(CO3) 2 2− , which increase water Th contents. Uranium occurs predominantly as UO2CO3, but CaUO2(CO3) 3 2− and CaUO2(CO3)3 also occur, decreasing its mobility in water. The waters are contaminated in NO2 , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

Keywords

Radium mines Enrichment factor Contamination Remediation Central Portugal 

Notes

Acknowledgements

Thanks are due to Prof. João Coutinho for the determination of organic matter and cation exchange capacity in samples of stream sediments and soils and A. Rodrigues for the water analyses, EDM for some information on the Alto da Várzea mine area. This study had the support of Portuguese Fundação para a Ciência e Tecnologia (FCT), through the strategic projects UID/GEO/04035/2013 and UID/MAR/04292/2013 (MARE).

References

  1. Acosta, J. A., Faz, A., Martinez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. Journal Geochemical Exploration, 109, 8–17.CrossRefGoogle Scholar
  2. Albuquerque, M. T. D., & Antunes, I. M. H. R. (2015). Uranium Spatio-temporal variability in groundwater—An environmental risk assessment case study. In J. R. Nelson (Ed.), Uranium: Sources, exposure and environmental effects; Chapter 7 (pp. 145–147). New York: Nova Publishers. ISBN 978-1-63482-827-7 (e-book).Google Scholar
  3. Alloway, J. (1995). Heavy metals in soils (2nd ed., p. 368). London: Blackie Academic & Professional.CrossRefGoogle Scholar
  4. ANDRA. (2009). ThermoChimie version 7b, C.RP.ASTR.O4.0032.Google Scholar
  5. Andrew, S., & Sutherland, R. A. (2004). Cu, Pb and Zn contamination in Nuuanu Watershed, Oahu, Hawaii. Science Total Environment, 324, 173–182.CrossRefGoogle Scholar
  6. Antunes, I. M. H. R., & Albuquerque, M. T. D. (2013). Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Science Total Environment, 442, 545–552.CrossRefGoogle Scholar
  7. Antunes, I. M. H. R., Gomes, M. E. P., Neiva, A. M. R., Carvalho, P. C. S., & Santos, A. C. T. (2016). Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W > Sn mine (NE Portugal). Ecotoxicology and Environmental Safety, 133, 135–145.CrossRefGoogle Scholar
  8. Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., Harrison, C., et al. (2012). Developing environment-specific water quality guidelines for suspended particulate matter. Water Research, 46, 2324–2332.CrossRefGoogle Scholar
  9. Boularbah, A., Schwartz, C., Bitton, G., & Morel, J. L. (2006). Heavy metal contamination from mining sites in south Morocco. 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810.CrossRefGoogle Scholar
  10. Cabral Pinto, M. M. S., Silva, M. M. V. G., & Neiva, A. M. R. (2008). Geochemistry of U-bearing minerals from the Vale de Abrutiga uranium mine area, central Portugal. Neues Jahrbuch Mineralogie, 185, 183–198.CrossRefGoogle Scholar
  11. Cabral Pinto, M. M. S., Silva, M. M. V. G., & Neiva, A. M. R. (2009). Uranium minerals from a Portuguese Variscan peraluminous granite, its alteration, and related uranium-quartz veins. In G. H. Wolfe (Ed.), Uranium: Compounds, isotopes and applications (pp. 287–318). New York: Nova Science.Google Scholar
  12. Cardoso, J. C., Bessa, M. T., & Marado, M. B. (1973). Carta dos Solos de Portugal (1:1000000).Google Scholar
  13. Carvalho, F. P. (2014). The national radioactivity monitoring program for the regions of uranium mines and uranium legacy sites in Portugal. Procedia Earth and Planetary Science, 8, 33–37.CrossRefGoogle Scholar
  14. Carvalho, P. C. S., Neiva, A. M. R., & Silva, M. M. V. G. (2012). Assessment to the potential mobility and toxicity of metals and metalloids in soils contaminated by old Sb-Au and As-Au mines (NW Portugal). Environmental Earth Sciences, 65, 1215–1230.CrossRefGoogle Scholar
  15. Carvalho, P. C. S., Neiva, A. M. R., Silva, M. M. V. G., & Antunes I. M. H. R. (2013). Metal and metalloid leaching from tailings into stream water and sediments in the old Ag–Pb–Zn Terramonte mine, northern Portugal. Environmental Earth Sciences, 71(5), 2029–2041.Google Scholar
  16. Carvalho, P. C. S., Neiva, A. M. R., Silva, M. M. V. G., & Ferreira da Silva, E. A. (2014). Geochemical comparison of waters and stream sediments close to abandoned Sb–Au and As–Au mining areas, northern Portugal. Chemie der Erde, 74(2), 267–283.CrossRefGoogle Scholar
  17. Cui, Y., & Xin, D. (2011). Soil heavy metal and wheat phytotoxicity in the vicinity of an abandoned lead–zinc mine in Shangyu City, eastern China. Environmental Earth Sciences, 62, 257–264.CrossRefGoogle Scholar
  18. Decreto Ministeriale. (1999). Approvazione dei metodi ufficiali di analise chimica del suolo. SO Gazzetta Ufficiale.Google Scholar
  19. Empresa de Desenvolvimento Mineiro (EDM). (2005). Mina do Alto da VárzeaRelatório Final.Google Scholar
  20. European Environment Agency. (2006). CLC 2006Corine Land Cover, Raster data on land cover. Version 12/2009.Google Scholar
  21. Favas, P. J. C., Pratas, J., Gomez, M. E. P., & Cala, V. (2011). Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity. Journal Geochemical Exploration, 111, 160–171.CrossRefGoogle Scholar
  22. Fernandez-Caliani, J. C., Barba-Brioso, C., Gonzalez, I., & Galan, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (southwest Spain). Water Air Soil Pollution, 200, 211–226.CrossRefGoogle Scholar
  23. Ferreira, A. M. P. J. (2000). Dados geoquímicos de base de sedimentos fluviais de amostragem de baixa densidade de Portugal Continental: Estudo de factores de variação regional. Unpublished Ph.D. thesis, Univ. Aveiro, Portugal.Google Scholar
  24. Ferreira da Silva, E., Zhang, C., Serrano Pinto, L., Patinha, C., & Reis, P. (2004). Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Applied Geochemistry, 19, 887–898.CrossRefGoogle Scholar
  25. Ferreira, A., Inácio, M. M., Morgado, P., Batista, M. J., Ferreira, L., Pereira, V., et al. (2001). Low-density geochemical mapping in Portugal. Applied Geochemistry, 16, 1323–1331.CrossRefGoogle Scholar
  26. Ficklin, W. H., Plumlee, G. S., Smith, K. S., & McHugh, J. B. (1992). Geochemical classification of mine drainage and natural drainage in mineralized areas. In Y. K. Kharaka & A. S. Maest (Eds.), Water–rock interaction (Vol. 7, pp. 81–384). Rotterdam: Balkema.Google Scholar
  27. Forghani, G., Mokhtarib, A. R., Kazemia, G. A., & Farda, M. D. (2015). Total concentration, speciation and mobility of potentially toxic elements in soils around a mining area in central Iran. Chemie der Erde, 75, 323–334.CrossRefGoogle Scholar
  28. GSJ. (2005). Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geologica Survey of Japan, Open File Report No. 419.Google Scholar
  29. Guillén, M. T., Delgado, J., Albanese, S., & De Vivo, B. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). Journal Geochemical Exploration, 119(120), 32–43.CrossRefGoogle Scholar
  30. Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environmental Science, 2, 729–736.CrossRefGoogle Scholar
  31. Håkanson, L. (1980). An ecological risk index for aquatic pollution control—A sedimentological approach. Water Research, 14(8), 975–1001.CrossRefGoogle Scholar
  32. Hiller, E., Lalinská, B., Chovan, M., Jurkovič, L., Klimko, T., Jankulár, M., et al. (2012). Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Applied Geochemistry, 27, 598–614.CrossRefGoogle Scholar
  33. Hong, H., Yajuan, Y., & Xiaodong, W. (2004). Pollution of heavy metals in surface sediments from Huaihe River (Jiangsu Section) and its assessment of potential ecological risk. Environment Pollution Control, 26(3), 115–118.Google Scholar
  34. Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. Toxicology Science, 123(2), 305–332.CrossRefGoogle Scholar
  35. Instituto Português do Mar e da Atmosfera (IPMA). (2015). Clima de Portugal continental. https://www.ipma.pt/pt/educativa/tempo.clima/.
  36. Kalender, L., & Uçar, S. Ç. (2013). Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. Journal Geochemical Exploration, 134, 73–84.CrossRefGoogle Scholar
  37. Kim, S. S., Baik, M. H., Choi, J. W., Shin, H. S., & Yun, J. I. (2010). The dissolution of ThO2 (Cr) in carbonate solutions and a granitic groundwater. Journal Radioanalytical and Nuclear Chemistry, 286, 91–97.CrossRefGoogle Scholar
  38. Larios, R., Fernández-Martinéz, R., Álvarez, R., & Rucandio, I. (2012). Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Science Total Environment, 431, 426–435.CrossRefGoogle Scholar
  39. Larson, L. N., Kipp, G. G., Mott, H. V., & Stone, J. J. (2012). Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA. Applied Geochemistry, 27, 879–891.CrossRefGoogle Scholar
  40. Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2009). Arsenic Adsorption onto Hematite and Goethite. Comptes Rendus Chimie, 12(8), 1–30.Google Scholar
  41. Min, L., Xiaohuan, X., Guiyi, X., Hangxin, C., Zhongfang, Y., Guohua, Z., et al. (2014). National multi-purpose regional geochemical survey in China. Journal Geochemical Exploration, 139, 21–30.CrossRefGoogle Scholar
  42. Mukherjee, A., Bhattacharya, P., & Fryar, A. E. (2011). Arsenic and other toxic elements in surface and groundwater systems. Applied Geochemistry, 26, 415–420.CrossRefGoogle Scholar
  43. Müller, S. N. (1979). In: Den sediment des Rheins-Veranderungen seilt (1971). Unschau, 79, 778–783.Google Scholar
  44. Neiva, A. M. R., Antunes, I. M. H. R., Carvalho, P. C. S., & Santos, A. C. T. (2016a). Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. Journal Geochemical Exploration, 162, 1–15.CrossRefGoogle Scholar
  45. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Cabral Pinto, M. M. S., Santos, A. C. T., Cunha, P. P., et al. (2016b). Spatial variability of soils and stream sediments and the remediation effects in a Portuguese uranium mine area. Central Portugal. Chemie Erde Geochemistry. doi: 10.1016/j.chemer.2016.08.033.Google Scholar
  46. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Santos, A. C. T., & Cabral-Pinto, M. M. S. (2015). Spatial and temporal variability of surface water and groundwater before and after remediation of a Portuguese uranium mine area. Chemie der Erde Geochemistry, 75(3), 345–356.CrossRefGoogle Scholar
  47. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Silva, M. M. V. G., Santos, A. C. T., Cabral Pinto, M. M. S., et al. (2014). Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, Central Portugal. Journal Geochemical Exploration, 136, 102–117.CrossRefGoogle Scholar
  48. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Page et al. (Eds.), Methods of soils analysis, Part 2, 2nd ed. Agronomy, 9 (pp. 961–1010). Madison, WI: American Society of Agronomy Inc.Google Scholar
  49. Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43.Google Scholar
  50. Pinto, M. M. S. C., Silva, M. M. V. G., & Neiva, A. M. R. (2004). Pollution of water and stream sediments associated with the Vale de Abrutiga uranium mine, Central Portugal. Mine Water Environment, 23, 66–75.CrossRefGoogle Scholar
  51. Portuguese Decree. (1998). Decree 236/1998. Portuguese legislation on water quality. Diário da República I-A (pp. 3676–3722).Google Scholar
  52. Portuguese Decree. (2007). Portuguese legislation on water quality. Diário da República I-A (pp. 5747–5765).Google Scholar
  53. Qinna, Z., Qixin, X., & Kai, Y. (2005). Application of potential ecological risk index in soil pollution of typical polluting industries. Journal of East China Normal University, 1, 110–115.Google Scholar
  54. Ribera, D., Labrot, F., Tisnerat, G., & Narbonne, J. F. (1996). Uranium in the environment: Occurrence, transfer and biological effects. Environmental Contamination and Toxicology, 146, 53–80.Google Scholar
  55. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos W., et al. (2005). Foregs geochemical atlas of Europe. Methodology and Maps, Part 1 (526 pp) and Part 2 (690 pp).Google Scholar
  56. Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals (p. 218). Berlin: Springer.CrossRefGoogle Scholar
  57. SNIRH. (2009). Sistema Nacional de Informação de Recursos Hídricos.Google Scholar
  58. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream. Oahu, Hawaii. Environmental Geology, 39, 611–627.CrossRefGoogle Scholar
  59. Thomas, G. W. (1982). Exchangeable cations. In: A. L. Page (Ed.), Methods of soil analysis, part 2, 2nd edn.Google Scholar
  60. Vandenborre, J., Abdelouas, A., & Grambow, B. (2008). Discrepancies in thorium oxide solubility values: A new experimental approach to improve understanding of oxide surface at solid/solution interface. Radiochimica Acta, 96, 515–520.CrossRefGoogle Scholar
  61. Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal Hazards Materials, 195, 355–364.CrossRefGoogle Scholar
  62. Verca, P., & Dolenec, T. (2005). Geochemical estimation of copper contamination in the Healing Mud from Makirina Bay, Central Adriatic. Environmental International, 31(1), 53–61.CrossRefGoogle Scholar
  63. Vrhovnik, P., Šmuc, N. R., Dolenec, T., Serafimovski, T., & Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences, 70, 761–775.CrossRefGoogle Scholar
  64. Wenyl, H., Fengru, H., & Jingsheng, C. (1997). Comparative study of assessment method for river particulate heavy metal pollution. Science Geography Sin., 17(1), 81–86.Google Scholar
  65. World Health Organization (WHO). (2011). Guidelines for drinking water quality, 4th edn. http://Whqlibdoc.Who.int/publications/2011/9789241548151_eng.pdf.
  66. Xuejing, X. (1995). Analytical requirements in international geochemical mapping. Analyst, 120, 1497–1504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • I. M. H. R. Antunes
    • 1
    • 2
  • A. M. R. Neiva
    • 3
    • 4
  • M. T. D. Albuquerque
    • 2
    • 5
  • P. C. S. Carvalho
    • 4
  • A. C. T. Santos
    • 4
  • Pedro  P. Cunha
    • 6
  1. 1.ICT Centre / University of MinhoBragaPortugal
  2. 2.CERENA CentrePortoPortugal
  3. 3.GEOBIOTE CentreAveiroPortugal
  4. 4.Department of Earth SciencesUniversity of CoimbraCoimbraPortugal
  5. 5.Instituto Politécnico de Castelo BrancoCastelo BrancoPortugal
  6. 6.MARE - Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal

Personalised recommendations