Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1887–1897 | Cite as

Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau: implications for regional sources and environmental behaviors

  • Xin Liu
  • Haijian Bing
  • Yanzhi Chen
  • Jun Li
  • Yanhong Wu
  • Gan Zhang
Original Paper

Abstract

We investigated the occurrence of halogenated flame retardants (HFRs) including polybrominated diphenyl ethers (PBDEs), six novel brominated flame retardants (NBFRs) and dechlorane plus in air and soils on the eastern slope of Mt. Gongga on the eastern Tibetan Plateau. We detected all of the NBFR except bis(2-ethylhexyl)-tetrabromophthalate and pentabromoethyl benzene. NBFRs constituted the most prevalent group. BDE-28 and BDE-47 dominated among the PBDE congeners. Decabromodiphenyl ethane was detected at relatively high levels up to 171 pg/m3 and 1450 pg/g dry weight in air and soils, respectively; however, it appeared to be easily degraded in the environment. A general decreasing trend was observed among the HFR concentrations with increasing altitude, and this was due to the prominent contribution of source emissions over possible influence of environmental conditions. This study also suggests that HFRs are supplied to forest soils mainly in the form of precipitation and retained in the O horizon layers.

Keywords

Brominated flame retardants Dechlorane plus High mountain Tibetan Plateau Regional sources Environmental behaviors 

Notes

Acknowledgements

This work is supported by the National Scientific Foundation of China (Nos. 41125014 and 41390242), the Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province, China (No. U1133004). We acknowledge the field sampling support from Institute of Mountain Hazards and Environment, Chinese Academy of Sciences.

Supplementary material

10653_2017_9938_MOESM1_ESM.docx (129 kb)
Supplementary material 1 (DOCX 129 kb)

References

  1. Assessing and Managing Chemicals under TSCA-Polybrominated Dophenyl Ethers (PBDEs). United States Environmental Protection Agency. Restriction of Hazardous Substances in Electrical and Electronic Equipment.Google Scholar
  2. Bergknut, M., Wiberg, K., & Klaminder, J. (2011). Vertical and lateral redistribution of POPs in soils developed along a hydrological gradient. Environmental Science and Technology, 45, 10378–10384.CrossRefGoogle Scholar
  3. Breivik, K., Wania, F., Muir, D. C. G., Alaee, M., Backus, S., & Pacepavicius, G. (2006). Empirical and modeling evidence of the long-range atmospheric transport of decabromodiphenyl ether. Environmental Science and Technology, 40, 4612–4618.CrossRefGoogle Scholar
  4. Cao, Z., Xu, F., Covaci, A., Wu, M., Wang, H., Yu, G., et al. (2014). Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environmental Science and Technology, 48, 8839–8846.CrossRefGoogle Scholar
  5. Chen, D., Liu, W., Liu, X., Westgate, J. N., & Wania, F. (2008). Cold-trapping of persistent organic pollutants in the mountain soils of Western Sichuan, China. Environmental Science and Technology, 42, 9086–9091.CrossRefGoogle Scholar
  6. Covaci, A., Harrad, S., Abdallah, M. A. E., Ali, N., Law, R. J., Herzke, D., et al. (2011). Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environment International, 37, 532–556.CrossRefGoogle Scholar
  7. Dalla Valle, M., Jurado, E., Dachs, J., Sweetman, A. J., & Jones, K. C. (2005). The maximum reservoir capacity of soils for persistent organic pollutants: Implications for global cycling. Environmental Pollution, 134, 153–164.CrossRefGoogle Scholar
  8. de Wit, C. A., Herzke, D., & Vorkamp, K. (2010). Brominated flame retardants in the Arctic environment—Trends and new candidates. Science of the Total Environment, 408, 2885–2918.CrossRefGoogle Scholar
  9. de Wit, C. A., Kierkegaard, A., Ricklund, N., & Sellstrom, U. (2011). Emerging brominated flame retardants in the environment. In E. Eljarrat & D. Barcelo (Eds.), Brominated flame retardants (pp. 241–286). Berlin: Springer.Google Scholar
  10. Di Guardo, A., Zaccara, S., Cerabolini, B., Acciarri, M., Terzaghi, G., & Calamari, D. (2003). Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. Chemosphere, 52, 789–797.CrossRefGoogle Scholar
  11. Hale, R. C., La Guardia, M. J., Harvey, E. P., Mainor, T. M., Duff, W. H., & Gaylor, M. O. (2001). Polybrominated diphenyl ether flame retardants in Virginia freshwater fishes (USA). Environmental Science and Technology, 35, 4585–4591.CrossRefGoogle Scholar
  12. Hites, R. A., Salamova, A., & Venier, M. (2010). Dechlorane Plus in Great Lakes air. Organohalogen Compounds, 72, 423–426.Google Scholar
  13. Hoh, E., Zhu, L., & Hites, R. A. (2006). Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environmental Science and Technology, 40, 1184–1189.CrossRefGoogle Scholar
  14. Jaward, F. M., Di Guardo, A., Nizzetto, L., Cassani, C., Raffaele, F., Ferretti, R., et al. (2005). PCBs and selected organochlorine compounds in Italian mountain air: The influence of altitude and forest ecosystem type. Environmental Science and Technology, 39, 3455–3463.CrossRefGoogle Scholar
  15. Jiao, W., Ouyang, W., Hao, F., Liu, B., & Wang, F. (2014). Geochemical variability of heavy metals in soil after land use conversions in Northeast China and its environmental applications. Environmental Science: Processes & Impacts, 16, 924–931.Google Scholar
  16. Kemmlein, S., Hahn, O., & Jann, O. (2003). Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmospheric Environment, 37, 5485–5493.CrossRefGoogle Scholar
  17. La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science and Technology, 40, 6247–6254.CrossRefGoogle Scholar
  18. Li, Y., Geng, D., Liu, F., Wang, T., Wang, P., Zhang, Q., et al. (2012). Study of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air sampling. Atmospheric Environment, 51, 140–145.CrossRefGoogle Scholar
  19. Liu, X., Li, J., Zheng, Q., Bing, H., Zhang, R., Wang, Y., et al. (2014). Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: A case study of Mt. Gongga, eastern Tibetan Plateau. Environmental Science and Technology, 48, 14377–14385.CrossRefGoogle Scholar
  20. Liu, Z., & Qiu, F. (1986). The main vegetation types and their distribution in the Gongga Mouintainous region. Acta Phytoecologica et Geobotanica Sinica, 10, 26–34. (in Chinese).Google Scholar
  21. Ma, Y., Salamova, A., Venier, M., & Hites, R. A. (2013). Has the phase-out of PBDEs affected their atmospheric levels? Trends of PBDEs and their replacements in the Great Lakes atmosphere. Environmental Science and Technology, 47, 11457–11464.CrossRefGoogle Scholar
  22. Moeckel, C., Nizzetto, L., Guardo, A. D., Steinnes, E., Freppaz, M., Filippa, G., et al. (2008). Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling. Environmental Science and Technology, 42, 8374–8380.CrossRefGoogle Scholar
  23. Möller, A., Xie, Z., Caba, A., Sturm, R., & Ebinghaus, R. (2012a). Occurrence and air-seawater exchange of brominated flame retardants and Dechlorane Plus in the North Sea. Atmospheric Environment, 46, 346–353.CrossRefGoogle Scholar
  24. Möller, A., Xie, Z., Cai, M., Sturm, R., & Ebinghaus, R. (2012b). Brominated flame retardants and dechlorane plus in the marine atmosphere from southeast Asia toward Antarctica. Environmental Science and Technology, 46, 3141–3148.CrossRefGoogle Scholar
  25. Nadjia, L., Abdelkader, E., Ulrich, M., & Bekka, A. (2014). Spectroscopic behavior of saytex 8010 under UV–visible light and comparative thermal study with some flame bromine retardant. Jounal of Photochemistry and Photobiology A: Chemistry, 275, 96–102.CrossRefGoogle Scholar
  26. Qiu, X., & Hites, R. A. (2007). Dechlorane plus and other flame retardants in tree bark from the northeastern United States. Environmental Science and Technology, 42, 31–36.CrossRefGoogle Scholar
  27. Qiu, X., Marvin, C. H., & Hites, R. A. (2007). Dechlorane Plus and other flame retardants in a sediment core from Lake Ontario. Environmental Science and Technology, 41, 6014–6019.CrossRefGoogle Scholar
  28. Qiu, X., Zhu, T., & Hu, J. (2010). Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China. Chemosphere, 80, 1207–1212.CrossRefGoogle Scholar
  29. Ren, N., Sverko, E., Li, Y.-F., Zhang, Z., Harner, T., Wang, D., et al. (2008). Levels and isomer profiles of dechlorane plus in Chinese air. Environmental Science and Technology, 42, 6476–6480.CrossRefGoogle Scholar
  30. Salamova, A., & Hites, R. A. (2011). Dechlorane plus in the atmosphere and precipitation near the Great Lakes. Environmental Science and Technology, 45, 9924–9930.CrossRefGoogle Scholar
  31. Shi, T., Chen, S.-J., Luo, X.-J., Zhang, X.-L., Tang, C.-M., Luo, Y., et al. (2009). Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Chemosphere, 74, 910–916.CrossRefGoogle Scholar
  32. Stapleton, H. M., Allen, J. G., Kelly, S. M., Konstantinov, A., Klosterhaus, S., Watkins, D., et al. (2008). Alternate and new brominated flame retardants detected in U.S. house dust. Environmental Science and Technology, 42, 6910–6916.CrossRefGoogle Scholar
  33. Sverko, E., Tomy, G. T., Marvin, C. H., Zaruk, D., Reiner, E., Helm, P. A., et al. (2007). Dechlorane plus levels in sediment of the lower Great Lakes. Environmental Science and Technology, 42, 361–366.CrossRefGoogle Scholar
  34. Sverko, E., Tomy, G. T., Reiner, E. J., Li, Y.-F., McCarry, B. E., Arnot, J. A., et al. (2011). Dechlorane plus and related compounds in the environment: A review. Environmental Science and Technology, 45, 5088–5098.CrossRefGoogle Scholar
  35. Syed, J. H., Malik, R. N., Li, J., Wang, Y., Xu, Y., Zhang, G., et al. (2013). Levels, profile and distribution of dechloran plus (DP) and polybrominated diphenyl ethers (PBDEs) in the environment of Pakistan. Chemosphere, 93, 1646–1653.CrossRefGoogle Scholar
  36. Tian, M., Chen, S.-J., Wang, J., Zheng, X.-B., Luo, X.-J., & Mai, B.-X. (2011). Brominated flame retardants in the atmosphere of e-waste and rural sites in southern China: Seasonal variation, temperature dependence, and gas-particle partitioning. Environmental Science and Technology, 45, 8819–8825.CrossRefGoogle Scholar
  37. Tomy, G. T., Pleskach, K., Ismail, N., Whittle, D. M., Helm, P. A., Sverko, E., et al. (2007). Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs. Environmental Science and Technology, 41, 2249–2254.CrossRefGoogle Scholar
  38. Tremolada, P., Villa, S., Bazzarin, P., Bizzotto, E., Comolli, R., & Vighi, M. (2008). POPs in mountain soils from the Alps and Andes: Suggestions for a ‘precipitation effect’ on altitudinal gradients. Water, Air, and Soil pollution, 188, 93–109.CrossRefGoogle Scholar
  39. Venier, M., & Hites, R. A. (2008). Flame retardants in the atmosphere near the Great Lakes. Environmental Science and Technology, 42, 4745–4751.CrossRefGoogle Scholar
  40. Wang, D.-G., Yang, M., Qi, H., Sverko, E., Ma, W.-L., Li, Y.-F., et al. (2010a). An Asia-specific source of dechlorane plus: Concentration, isomer profiles, and other related compounds. Environmental Science and Technology, 44, 6608–6613.CrossRefGoogle Scholar
  41. Wang, J., Chen, S., Nie, X., Tian, M., Luo, X., An, T., et al. (2012a). Photolytic degradation of decabromodiphenyl ethane (DBDPE). Chemsphere, 89(7), 844–849.CrossRefGoogle Scholar
  42. Wang, X.-P., Gong, P., Yao, T.-D., & Jones, K. C. (2010b). Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau. Environmental Science and Technology, 44, 2988–2993.CrossRefGoogle Scholar
  43. Wang, X.-P., Sheng, J.-J., Gong, P., Xue, Y.-G., Yao, T.-D., & Jones, K. C. (2012b). Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling. Environmental Pollution, 170, 145–151.CrossRefGoogle Scholar
  44. Wang, Y., Wang, S., Xu, Y., Luo, C., Li, J., & Zhang, G. (2015). Characterization of the exchange of PBDEs in a subtropical paddy field of China: A significant inputs of PBDEs via air–foliage exchange. Environmental Pollution, 205, 1–7.CrossRefGoogle Scholar
  45. Wania, F., & Dugani, C. B. (2003). Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models. Environmental Toxicology and Chemistry, 22, 1252–1261.CrossRefGoogle Scholar
  46. Wei, H., Zou, Y., Li, A., Christensen, E. R., & Rockne, K. J. (2013). Photolytic debromination pathway of polybrominated diphenyl ethers in hexane by sunlight. Environmental Pollution, 174, 194–200.CrossRefGoogle Scholar
  47. Wilford, B. H., Harner, T., Zhu, J., Shoeib, M., & Jones, K. C. (2004). Passive sampling survey of polybrominated diphenyl ether flame retardants in indoor and outdoor air in Ottawa, Canada: Implications for sources and exposure. Environmental Science and Technology, 38, 5312–5318.CrossRefGoogle Scholar
  48. Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., et al. (2012). Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau. Environmental Pollution, 161, 154–161.CrossRefGoogle Scholar
  49. Yang, M., Qi, H., Jia, H.-L., Ren, N.-Q., Ding, Y.-S., Ma, W.-L., et al. (2013a). Polybrominated diphenyl ethers in air across China: Levels, compositions, and gas-particle partitioning. Environmental Science and Technology, 47, 8978–8984.CrossRefGoogle Scholar
  50. Yang, R., Zhang, S., Li, A., Jiang, G., & Jing, C. (2013b). Atitudinal and spatial signature of POPs in soil, lichen, conifer needles, and bark of the southeast tibetan plateau: Implications for sources and environmental cycling. Environmental Science and Technology, 47, 12736–13743.CrossRefGoogle Scholar
  51. Zhang, X.-L., Luo, X.-J., Chen, S.-J., Wu, J.-P., & Mai, B.-X. (2009). Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China. Environmental Pollution, 157, 1917–1923.CrossRefGoogle Scholar
  52. Zheng, X., Liu, X., Jiang, G., Wang, Y., Zhang, Q., Cai, Y., et al. (2012). Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau. Environmental Pollution, 161, 101–106.CrossRefGoogle Scholar
  53. Zheng, Q., Nizzetto, L., Li, J., Mulder, M. D., Sáňka, O., Lammel, G., et al. (2015). Spatial distribution of old and emerging flame retardants in Chinese forest soils: Sources, trends and processes. Environmental Science and Technology, 49, 2904–2911.CrossRefGoogle Scholar
  54. Zheng, Q., Nizzetto, L., Mulder, M. D., Sáňka, O., Lammel, G., Li, J., et al. (2014). Does an analysis of polychlorinated biphenyl (PCB) distribution in mountain soils across China reveal a latitudinal fractionation paradox? Environmental Pollution, 195, 115–122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Xin Liu
    • 1
  • Haijian Bing
    • 2
  • Yanzhi Chen
    • 3
  • Jun Li
    • 1
  • Yanhong Wu
    • 2
  • Gan Zhang
    • 1
  1. 1.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  3. 3.Circular Economy and Cleaner Production Center, South China Institute of Environmental Sciences (SCIES)Ministry of Environment Protection (MEP)GuangzhouChina

Personalised recommendations