Environmental Geochemistry and Health

, Volume 40, Issue 1, pp 505–519 | Cite as

Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China

  • Rui Li
  • Haijian Bing
  • Yanhong WuEmail author
  • Jun Zhou
  • Zhongxiang Xiang
Original Paper


The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200–3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500–3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.


Trace metals Pb isotopic composition Atmospheric deposition Alpine soils Luoji Mountain 



This work was supported by the National Natural Science Foundation of China (41402313), Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Youth Innovation Promotion Association, Chinese Academy of Sciences and IMHE Science Fund for Young Scholars. We are grateful to the fellows from Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, for their assistance in field sampling.

Supplementary material

10653_2017_9937_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1710 kb)


  1. Bacardit, M., & Camarero, L. (2010). Major and trace elements in soils in the Central Pyrenees: High altitude soils as a cumulative record of background atmospheric contamination over SW Europe. Environmental Science and Pollution Research, 17, 1606–1621.CrossRefGoogle Scholar
  2. Bi, X. Y., Feng, X. B., Yang, Y. G., Li, X. D., Sin, G. P. Y., Qiu, G. L., et al. (2007). Heavy metals in an impacted wetland system: A typical case from southwestern China. Science of the Total Environment, 387, 257–268.CrossRefGoogle Scholar
  3. Bindler, R., Brannvall, M. L., Renberg, I., Emteryd, O., & Grip, H. (1999). Natural lead concentrations in pristine boreal forest soils and past pollution trends: A reference for critical load models. Environmental Science and Technology, 33, 3362–3367.CrossRefGoogle Scholar
  4. Bing, H. J., Wu, Y. H., Zhou, J., Li, R., Luo, J., & Yu, D. (2016a). Vegetation and cold trapping modulating elevation-dependent distribution of trace metals in soils of a high mountain in eastern Tibetan Plateau. Scientific Reports, 6, 24081.CrossRefGoogle Scholar
  5. Bing, H. J., Wu, Y. H., Zhou, J., Liang, J. H., Wang, J. P., & Yang, Z. J. (2016b). Mobility and eco-risk of trace metals in soils at the Hailuogou glacier foreland in eastern Tibetan Plateau. Environmental Science and Pollution Research, 23, 5721–5732.CrossRefGoogle Scholar
  6. Bing, H. J., Wu, Y. H., Zhou, J., Ming, L. L., Sun, S. Q., & Li, X. D. (2014). Atmospheric deposition of lead in remote high mountain of eastern Tibetan Plateau. China Atmospheric Environment, 99, 425–435.CrossRefGoogle Scholar
  7. Bollhöfer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: The northern hemisphere. Geochimica et Cosmochimica Acta, 65, 1727–1740.CrossRefGoogle Scholar
  8. Censi, P., Zuddas, P., Randazzo, L. A., Tamburo, E., Speziale, S., Cuttitta, A., et al. (2011). Source and nature of inhaled atmospheric dust from trace element analyses of human bronchial fluids. Environmental Science and Technology, 45, 6262–6267.CrossRefGoogle Scholar
  9. Chen, Y. Y., Li, X. S., Han, Z. Y., Yang, S. Y., Wang, Y. B., & Yang, D. Y. (2008). Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu Province. Journal of Geographical Sciences, 18, 341–352.CrossRefGoogle Scholar
  10. Chen, J. M., Tan, M. G., Li, Y. L., Zhang, Y. M., Lu, W. W., Tong, Y. P., et al. (2005). A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment, 39, 1245–1253.CrossRefGoogle Scholar
  11. Chen, J. M., Tong, Y. P., Xu, J. Z., Liu, X. L., Li, Y. L., Tan, M. G., et al. (2012). Environmental lead pollution threatens the children living in the Pearl River Delta region, China. Environmental Science and Pollution Research, 19, 3268–3275.CrossRefGoogle Scholar
  12. Cheng, H. R., Zhang, G., Jiang, X. Y., Li, X. D., Liu, X., Li, J., et al. (2007). Organochlorine pesticides, polybrominated biphenyl ethers and lead isotopes during the spring time at the Waliguan Baseline Observatory, Northwest China: Implication for long-range atmospheric transport. Atmospheric Environment, 41, 4734–4747.CrossRefGoogle Scholar
  13. Cicchella, D., Giaccio, L., Dinelli, E., Albanese, S., Lima, A., Zuzolo, D., et al. (2015). GEMAS: Spatial distribution of chemical elements in agricultural and grazing land soil of Italy. Journal of Geochemical Exploration, 154, 129–142.CrossRefGoogle Scholar
  14. Cong, Z. Y., Kang, S. C., Luo, C. L., Li, Q., Huang, J., Gao, S. P., et al. (2011). Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmospheric Environment, 45, 6210–6215.CrossRefGoogle Scholar
  15. De Nicola, F., Maisto, G., Prati, M. V., & Alfani, A. (2008). Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environmental Pollution, 153, 376–383.CrossRefGoogle Scholar
  16. Draaijers, G., Erisman, J. W., Van Leeuwen, N. F. M., Römer, F. G., Te Winkel, B. H., Veltkamp, A. C., et al. (1997). The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment, 31, 387–397.CrossRefGoogle Scholar
  17. Erisman, J. W., & Draaijers, G. (2003). Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalization. Environmental Pollution, 124, 379–388.CrossRefGoogle Scholar
  18. Flegal, A. R., Gallon, C., Ganguli, P. M., & Conaway, C. H. (2013). All the lead in China. Critical Reviews in Environmental Science and Technology, 43, 1869–1944.CrossRefGoogle Scholar
  19. Friedland, A. J., Johnson, A. H., & Siccama, T. G. (1984). Trace metal content of the forest floor in the Green Mountains of Vermont: Spatial and temporal patterns. Water, Air, & Soil Pollution, 21, 161–170.CrossRefGoogle Scholar
  20. Fu, X. W., Feng, X. B., Zhu, W. Z., Rothenberg, S., Yao, H., & Zhang, H. (2010). Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158, 2324–2333.CrossRefGoogle Scholar
  21. Gandois, L., Tipping, E., Dumat, C., & Probst, A. (2010). Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. Atmospheric Environment, 44, 824–833.CrossRefGoogle Scholar
  22. Gao, Z. Y., Yin, G., Ni, S. J., & Zhang, C. J. (2004). Lead isotope geochemical characteristics in Chengdu. Carsologica Sinica, 23, 267–272.Google Scholar
  23. Gerdol, R., & Bragazza, L. (2006). Effects of altitude on element accumulation in alpine moss. Chemosphere, 64, 810–816.CrossRefGoogle Scholar
  24. Gerdol, R., Bragazza, L., & Marchesini, R. (2002). Element concentrations in the forest moss Hylocomium splendens: Variation associated with altitude, net primary production and soil chemistry. Environmental Pollution, 116, 129–135.CrossRefGoogle Scholar
  25. Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W., & Bonell, M. (2012). Rainfall interception by natural and planted forests in the middle mountains of central Nepal. Journal of Hydrology, 475, 270–280.CrossRefGoogle Scholar
  26. Halstead, M. J., Cunninghame, R. G., & Hunter, K. A. (2000). Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmospheric Environment, 34, 665–676.CrossRefGoogle Scholar
  27. Harmens, H., Norris, D. A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., et al. (2010). Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environmental Pollution, 158, 3144–3156.CrossRefGoogle Scholar
  28. Hu, Y. J., Lin, J., Zhang, S. Q., Kong, L. D., Fu, H. B., & Chen, J. M. (2015). Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere. Science of the Total Environment, 511, 369–380.CrossRefGoogle Scholar
  29. Huang, J., Kang, S. C., Zhang, Q. G., Guo, J. M., Cheng, P. F., Zhang, G. S., et al. (2013). Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere, 92, 871–881.CrossRefGoogle Scholar
  30. Johnson, R. C. (1990). The interception, throughfall and stemflow in a forest in Highland Scotland and the comparison with other upland forests in the UK. Journal of Hydrology, 118, 281–287.CrossRefGoogle Scholar
  31. Kang, S. C., Zhang, Q. G., Kaspari, S., Qin, D. H., Cong, Z. Y., Ren, J. W., et al. (2007). Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 41(34), 7208–7218.CrossRefGoogle Scholar
  32. Kärkäs, E., Teinilä, K., Virkkula, A., & Aurela, M. (2005). Spatial variations of surface snow chemistry during two austral summers in western Dronning Maud Land, Antarctica. Atmospheric Environment, 39, 1405–1416.CrossRefGoogle Scholar
  33. Kaste, J. M., Friedland, A. J., & Stürup, S. (2003). Using stable and radioactive isotopes to trace atmospherically deposited Pb in montane forest soils. Environmental Science and Technology, 37, 3560–3567.CrossRefGoogle Scholar
  34. Klaminder, J., Bindler, R., Emteryd, O., & Renberg, I. (2005). Uptake and recycling of lead by boreal forest plants: Quantitative estimates from a site in northern Sweden. Geochimica et Cosmochimica Acta, 69, 2485–2496.CrossRefGoogle Scholar
  35. Klos, A., Rajfur, M., Šrámek, I., & Waclawek, M. (2011). Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water, Air, & Soil Pollution, 222, 367–376.CrossRefGoogle Scholar
  36. Kuang, Y. W., Zhu, X. M., Xi, D., & Li, J. (2012). Distribution of anthropogenic lead estimated by Pb isotopic composition in the upper layers of soil from a mixed forest at Dinghushan, southern China. Journal of Soils and Sediments, 13, 394–402.CrossRefGoogle Scholar
  37. Lee, K., Hur, S. D., Hou, S. G., Hong, S. M., Qin, X., Ren, J. W., et al. (2008). Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment, 404, 171–181.CrossRefGoogle Scholar
  38. Lee, C. S. L., Li, X. D., Zhang, G., Li, J., Ding, A. J., & Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmospheric Environment, 41, 432–447.CrossRefGoogle Scholar
  39. Lee, P. K., Youm, S. J., & Jo, H. Y. (2013). Heavy metal concentrations and contamination levels from Asian dust and identification of sources: A case-study. Chemosphere, 91, 1018–1025.CrossRefGoogle Scholar
  40. Li, Q., Cheng, H. G., Zhou, T., Lin, C. Y., & Guo, S. (2012a). The estimated atmospheric lead emissions in China, 1990–2009. Atmospheric Environment, 60, 1–8.CrossRefGoogle Scholar
  41. Li, F. L., Liu, C. Q., Yang, Y. G., Bi, X. Y., Liu, T. Z., & Zhao, Z. Q. (2012b). Natural and anthropogenic lead in soils and vegetables around Guiyang city, Southwest China: A Pb isotopic approach. Science of the Total Environment, 431, 339–347.CrossRefGoogle Scholar
  42. Liu, X., Li, J., Zheng, Q., Bing, H. J., Zhang, R. J., Wang, Y., et al. (2014). Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: A case study of Mt. Gongga, eastern Tibetan Plateau. Environmental Science and Technology, 48, 14377–14385.CrossRefGoogle Scholar
  43. Loppi, S. (2014). Lichens as sentinels for air pollution at remote alpine areas (Italy). Environmental Science and Pollution Research, 21, 2563–2571.CrossRefGoogle Scholar
  44. Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157.CrossRefGoogle Scholar
  45. MacKinnon, G., MacKenzie, A. B., Cook, G. T., Pulford, I. D., Duncan, H. J., & Scott, E. M. (2011). Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK. Science of the Total Environment, 409, 5010–5019.CrossRefGoogle Scholar
  46. Marx, S. K., Rashid, S., & Stromsoe, N. (2016). Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives. Environmental Pollution, 213, 283–298.CrossRefGoogle Scholar
  47. Muyessar, T., Jilili, A., & Jiang, F. Q. (2013). Distribution characteristics of soil heavy metal content in northern slope of Tianshan Mountains and its source explanation. Chinese Journal of Eco-Agriculture, 21, 883–890.CrossRefGoogle Scholar
  48. Samecka-Cymerman, A., Stankiewicz, A., Kolon, K., Kempers, A. J., & MusiaŁ, M. (2012). Athyrium distentifolium used for bioindication at different altitudes in the Tatra National Park (South Poland). Ecotoxicology and Environmental Safety, 79, 184–188.CrossRefGoogle Scholar
  49. Sangster, D., Outridge, P., & Davis, W. (2000). Stable lead isotope characteristics of lead ore deposits of environmental significance. Environmental Reviews, 8, 115–147.CrossRefGoogle Scholar
  50. Sen, I. S., Bizimis, M., Tripathi, S. N., & Paul, D. (2016). Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmospheric Environment, 129, 27–33.CrossRefGoogle Scholar
  51. Shao, J. J., Shi, J. B., Duo, B., Liu, C. B., Gao, Y., & Fu, J. J. (2016). Trace metal profiles in mosses and lichens from the high-altitude Tibetan Plateau. RSC Advances, 6, 541–546.CrossRefGoogle Scholar
  52. Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental Pollution, 154, 254–263.CrossRefGoogle Scholar
  53. Shotyk, W., Goodsite, M. E., Roos-Barraclough, F., Givelet, N., Le Roux, G., Weiss, D., et al. (2005). Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands. Geochimica et Cosmochimica Acta, 69, 1–17.CrossRefGoogle Scholar
  54. Shotyk, W., Weiss, D., Kramers, J. D., Frei, R., Cheburkin, A. K., Gloor, M., et al. (2001). Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochimica et Cosmochimica Acta, 65, 2337–2360.CrossRefGoogle Scholar
  55. Srinivasa, S., Ramakrishna Reddy, M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.CrossRefGoogle Scholar
  56. Szopka, K., Karczewska, A., Jezierski, P., & Kabała, C. (2013). Spatial distribution of lead in the surface layers of mountain forest soils, an example from the Karkonosze National Park, Poland. Geoderma, 192, 259–268.CrossRefGoogle Scholar
  57. Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, & Soil Pollution, 132, 293–314.CrossRefGoogle Scholar
  58. Uncles, R. J., Stephens, J. A., & Harris, C. (2015). Estuaries of southwest England: Salinity, suspended particulate matter, loss-on-ignition and morphology. Progress in Oceanography, 137, 385–408.CrossRefGoogle Scholar
  59. Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., & Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science, 53, 15–27.CrossRefGoogle Scholar
  60. Xu, Y. H., Sun, Q. Q., Yi, L., Yin, X. J., Wang, A. J., Li, Y. H., et al. (2014). The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): Implications for historical pollution. Science of the Total Environment, 493(15), 729–736.CrossRefGoogle Scholar
  61. Xue, C. J., Zeng, R., Liu, S. W., Chi, G. X., Qing, H. R., Chen, Y. C., et al. (2007). Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China: A review. Ore Geology Reviews, 31, 337–359.CrossRefGoogle Scholar
  62. Yan, N., Zhang, J., Yuan, W. M., Gong, Q. J., Wang, Q. F., & Luo, J. H. (2013). Characteristics of isotopic geochemistry andmetallogenesis of the Gala gold deposit in Ganzi-Litang suture zone, western Sichuan Province, China. Acta Petrologica Sinica, 29, 1347–1357.Google Scholar
  63. Zhang, H., Yin, R. S., Feng, X. B., Sommar, J., Anderson, C. W. N., Sapkota, A., et al. (2013). Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures. Scientific Reports, 3, 3322.CrossRefGoogle Scholar
  64. Zheng, J., Tan, M. G., Shibata, Y., Tanaka, A., Li, Y., Zhang, G. L., et al. (2004). Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment, 38, 1191–1200.CrossRefGoogle Scholar
  65. Zhou, J. X., Huang, Z. L., Lv, Z. C., Zhu, X. K., Gao, J. G., & Mirnejad, H. (2014). Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb–Zn deposit, Southwest China. Ore Geology Reviews, 63, 209–225.CrossRefGoogle Scholar
  66. Zhou, J. X., Huang, Z. L., & Yan, Z. F. (2013). The origin of the Maozu carbonate-hosted Pb–Zn deposit, southwest China: Constrained by C–O–S–Pb isotopic compositions and Sm–Nd isotopic age. Journal of Asian Earth Sciences, 73, 39–47.CrossRefGoogle Scholar
  67. Zhu, B. Q., Chen, Y. W., & Peng, J. H. (2001). Lead isotope geochemistry of the urban environment in the Pearl River Delta. Applied Geochemistry, 16, 409–417.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Rui Li
    • 1
    • 2
  • Haijian Bing
    • 1
  • Yanhong Wu
    • 1
    Email author
  • Jun Zhou
    • 1
  • Zhongxiang Xiang
    • 1
    • 2
  1. 1.The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations