Environmental Geochemistry and Health

, Volume 39, Issue 6, pp 1397–1407 | Cite as

Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka

  • B. C. L. Athapattu
  • T. W. L. R. Thalgaspitiya
  • U. L. S. Yasaratne
  • Meththika Vithanage
Original Paper


The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.


Reverse osmosis CKDu Fluoride Phytoremediation Constructed wetlands Biochar 



The authors are grateful to the support given by Mr. Asela Bandara Karunashinghe, Mr. H.A. Jayasiri, Mr. S.C. Rathnayake at the National Water Supply and Drainage Board and the community-based organization at Sangilikanadarawa, Medawachchiya, Sri Lanka.


  1. Arceilvala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. New Delhi: Tata McGraw Hill Education Private Limited.Google Scholar
  2. Awuah, E., Oppong-Peprah, M., Lubberding, H. J., & Gijzen, H. J. (2004). Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage. Journal of Toxicology and Environmental Health, Part A, 67(20–22), 1727–1739. doi: 10.1080/15287390490493466.CrossRefGoogle Scholar
  3. Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y. S., & Vithanage, M. (2016). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health. doi: 10.1007/s10653-016-9842-0.Google Scholar
  4. Bruch, I., Alewell, U., Hahn, A., Hasselbach, R., & Alewell, C. (2014). Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecological Engineering, 68, 124–132.CrossRefGoogle Scholar
  5. Chandrajith, R., Dissanayake, C. B., Ariyarathna, T., Herath, H. M. J. M. K., & Padmasiri, J. P. (2011). Dose-dependent Na and Ca in fluoride-rich drinking water—another major cause of chronic renal failure in tropical arid regions. Science of the Total Environment, 409(4), 671–675. doi: 10.1016/j.scitotenv.2010.10.046.CrossRefGoogle Scholar
  6. Dharma-wardana, M. W. C., Amarasiri, S. L., Dharmawardene, N., & Panabokke, C. R. (2015). Chronic kidney disease of unknown aetiology and ground-water ionicity: Study based on Sri Lanka. Environmental Geochemistry and Health, 37(2), 221–231. doi: 10.1007/s10653-014-9641-4.CrossRefGoogle Scholar
  7. Giraldo, E., & Garzon, A. (2002). The potential for water hyacinth to improve the quality of Bogota river water in the Muña reservoir: Comparison with the performance of waste stabilization ponds. Water Science and Technology, 42, 103–110.Google Scholar
  8. Gupta, P., Roy, S., & Mahindrakar, A. B. (2012). Treatment of water using water hyacinth, water lettuce and vetiver grass—A review. Resources and Environment, 2(5), 202–215.CrossRefGoogle Scholar
  9. Halder, G., Khan, A. A., & Dhawane, S. (2016). Fluoride sorption onto a steam-activated biochar derived from cocos nucifera shell. CLEAN–Soil, Air, Water, 44(2), 124–133. doi: 10.1002/clen.201400649.CrossRefGoogle Scholar
  10. Herath, I., Iqbal, M. C. M., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R. A., et al. (2015a). Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and Sediments. doi: 10.1007/s11368-015-1332-y.Google Scholar
  11. Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2015b). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15(1), 126–138. doi: 10.1007/s11368-014-0967-4.CrossRefGoogle Scholar
  12. Herath, I., & Vithanage, M. (2015). Phytoremediation in constructed wetlands. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants (Vol. 2, pp. 243–263). Cham: Springer International Publishing.Google Scholar
  13. Jamuna, S., & Noorjahan, C. M. (2009). Treatment of sewage waste water using water hyacinth-Eichhornia sp and its reuse for fish culture. Toxicology International, 16, 103–106.Google Scholar
  14. Jayatilake, N., Mendis, S., Maheepala, P., & Mehta, F. R. (2013). Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrology, 14(1), 180. doi: 10.1186/1471-2369-14-180.CrossRefGoogle Scholar
  15. Ladislas, S., Gérente, C., Chazarenc, F., Brisson, J., & Andrès, Y. (2015). Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecological Engineering, 80, 85–91.CrossRefGoogle Scholar
  16. Mohan, D., Kumar, S., & Srivastava, A. (2014). Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 73, 798–808.CrossRefGoogle Scholar
  17. Mohan, D., Sharma, R., Singh, V. K., Steele, P., & Pittman, C. U. (2012). Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Industrial and Engineering Chemistry Research, 51(2), 900–914. doi: 10.1021/ie202189v.CrossRefGoogle Scholar
  18. Oh, T.-K., Choi, B., Shinogi, Y., & Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water, Air, and Soil pollution, 223(7), 3729–3738. doi: 10.1007/s11270-012-1144-2.CrossRefGoogle Scholar
  19. Otte, M. L., & Jacob, D. L. (2006). Constructed wetlands for phytoremediation: Rhizofiltration, phytostabilisation and phytoextraction. In M. Mackova, D. Dowling, & T. Macek (Eds.), Phytoremediation rhizoremediation (pp. 57–67). Dordrecht: Springer.CrossRefGoogle Scholar
  20. Ranasinghe, H., & Ranasinghe, M. (2015). Status, gaps and way forward in addressing the chronic kidney disease unidentified (CKDu) in Sri Lanka. Journal of Environmental Professionals Sri Lanka, 4(2), 59–68.CrossRefGoogle Scholar
  21. Rango, T., Jeuland, M., Manthrithilake, H., & McCornick, P. (2015). Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka. Science of the Total Environment, 518–519, 574–585. doi: 10.1016/j.scitotenv.2015.02.097.CrossRefGoogle Scholar
  22. Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., et al. (2015). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125–133. doi: 10.1016/j.jenvman.2015.08.018.CrossRefGoogle Scholar
  23. Rizwan, M. M., & Athapattu, B. C. L. (2014). Removal of nutrients from urban water by engineered constructed wetland with bio-geo filter and biotope. OUSL Journal of Engineering and Technology, 2(2), 39–55.Google Scholar
  24. Sanmuga Priya, E., & Senthamil Selvan, P. (2014). Water hyacinth (Eichhornia crassipes)—An efficient and economic adsorbent for textile effluent treatment—A review. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2014.03.002.Google Scholar
  25. Shreesadh, E. C., Sandeep, T., & Chauhan, M. S. (2013). Treatment of RO reject for tannery industry—A technical review. Journal of Environmental Science and Sustainability, 1(4), 113–116.Google Scholar
  26. Vaidyanathan, S., Kavadia, K. M., Borkar, L. P., & Mahajan, S. P. (1985). Optimal size, hydraulic retention time and volatile solids loading rate of biogas unit using water hyacinth. Journal of Chemical Technology and Biotechnology, 35(2), 121–128. doi: 10.1002/jctb.280350210.CrossRefGoogle Scholar
  27. Vithanage, M., Jayarathna, L., Rajapaksha, A. U., Dissanayake, C. B., Bootharaju, M. S., & Pradeep, T. (2012). Modeling sorption of fluoride on to iron rich laterite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, 69–75. doi: 10.1016/j.colsurfa.2012.02.011.CrossRefGoogle Scholar
  28. Wanigasuriya, K. P., Peiris-John, R. J., & Wickremasinghe, R. (2011). Chronic kidney disease of unknown aetiology in Sri Lanka: Is cadmium a likely cause? BMC Nephrology, 12, 32. doi: 10.1186/1471-2369-12-32.CrossRefGoogle Scholar
  29. Wasana, H. M. S., Perera, G. D. R. K., Gunawardena, P. D. S., Fernando, P. S., & Bandara, J. (2017). WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Scientific Reports, 7, 42516, doi: 10.1038/srep42516. http://www.nature.com/articles/srep42516#supplementary-information.
  30. Williams, H. G., Białowiec, A., Slater, F., & Randerson, P. F. (2010). Spatial variation of dissolved gas concentrations in a willow vegetation filter treating landfill leachate. Ecological Engineering, 36(12), 1774–1778.CrossRefGoogle Scholar
  31. Wimalawansa, S. J. (2014). Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: Causes, solutions, and recommendations. Environmental Health and Preventive Medicine, 19(6), 375–394. doi: 10.1007/s12199-014-0395-5.CrossRefGoogle Scholar
  32. Yadav, A. K., Kaushik, C. P., Haritash, A. K., Kansal, A., & Rani, N. (2006). Defluoridation of groundwater using brick powder as an adsorbent. Journal of Hazardous Materials, 128(2–3), 289–293. doi: 10.1016/j.jhazmat.2005.08.006.CrossRefGoogle Scholar
  33. Zeng, Z., Zhang, S.-D., Li, T.-Q., Zhao, F.-L., He, Z.-L., Zhao, H.-P., et al. (2013). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University Science B, 14(12), 1152–1161. doi: 10.1631/jzus.B1300102.CrossRefGoogle Scholar
  34. Zhang, B. Y., Zheng, J. S., & Sharp, R. G. (2010). Phytoremediation in engineered wetlands: Mechanisms and applications. Procedia Environmental Sciences, 2, 1315–1325. doi: 10.1016/j.proenv.2010.10.142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • B. C. L. Athapattu
    • 1
  • T. W. L. R. Thalgaspitiya
    • 2
  • U. L. S. Yasaratne
    • 3
  • Meththika Vithanage
    • 4
    • 5
    • 6
  1. 1.Department of Civil EngineeringThe Open University of Sri LankaNugegodaSri Lanka
  2. 2.National Water Supply and Drainage BoardRatmalanaSri Lanka
  3. 3.National Water Supply and Drainage BoardAnuradhapuraSri Lanka
  4. 4.Environmental Chemodynamics ProjectNational Institute of Fundamental StudiesKandySri Lanka
  5. 5.School of Civil Engineering and Surveying, Faculty of Health, Engineering and SciencesUniversity of Southern QueenslandToowoombaAustralia
  6. 6.International Centre for Applied Climate ScienceUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations