Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1785–1802 | Cite as

Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran)

  • Naghmeh SoltaniEmail author
  • Behnam Keshavarzi
  • Armin Sorooshian
  • Farid Moore
  • Christina Dunster
  • Ana Oliete Dominguez
  • Frank J. Kelly
  • Prakash Dhakal
  • Mohamad Reza Ahmadi
  • Sina Asadi
Original Paper


Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m−3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.


Particulate matter Amphibole asbestos Oxidative potential Iron ore Mining 



This work was financially supported by Gol-E-Gohar mining and industrial company. The authors wish to thank Shiraz University Research Committee and medical geology research center of Shiraz University for supporting this research. AS acknowledges support from Grant 2 P42 ES04940 from the National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program, NIH and the Center for Environmentally Sustainable Mining through the TRIF Water Sustainability Program at the University of Arizona. The University Spectroscopy and Imaging Facility (USIF) at the University of Arizona is acknowledged for assistance with SEM/EDX analysis.

Supplementary material

10653_2017_9926_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1131 kb)


  1. Ahmady-Birgani, H., Mirnejad, H., Feiznia, S., & McQueen, K. G. (2015). Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmospheric Environment, 119, 262–272.Google Scholar
  2. Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20.Google Scholar
  3. Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009). Spatial and chemical patterns of PM 10 in road dust deposited in urban environment. Atmospheric Environment, 43(9), 1650–1659.Google Scholar
  4. Asadi, S., & Rajabzadeh, M. A. (2014). Geochemistry, paragenesis, and wall-rock alteration of the qatruyeh iron deposits, southwest of Iran: Implications for a hydrothermal-metasomatic genetic model. Journal of Geological Research, 2014, 590540. doi: 10.1155/2014/590540.CrossRefGoogle Scholar
  5. Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio, A., et al. (2008). Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement. Inhalation Toxicology, 20(1), 75–99.Google Scholar
  6. Azadeh, A., Osanloo, M., & Ataei, M. (2010). A new approach to mining method selection based on modifying the Nicholas technique. Applied Soft Computing, 10(4), 1040–1061.Google Scholar
  7. Babaki, A., & Aftabi, A. J. (2006). Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosciences Scientific Quarterly Journal, 61, 40–59.Google Scholar
  8. Baker, M. A., Cerniglia, G. J., & Zaman, A. (1990). Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Analytical Biochemistry, 190(2), 360–365.Google Scholar
  9. Banerjee, K. K., Wang, H., & Pisaniello, D. (2006). Iron-ore dust and its health impacts. Environmental Health, 6(1), 11.Google Scholar
  10. Banks, D. E., & Parker, J. E. (1998). Occupational lung disease: An international perspective. London: Chapman & Hall Medical.Google Scholar
  11. Berndt, M. E., & Brice, W. C. (2008). The origins of public concern with taconite and human health: Reserve Mining and the asbestos case. Regulatory Toxicology and Pharmacology, 52(1), S31–S39.Google Scholar
  12. Bhattacharjee, P., & Paul, S. (2016). Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: Understanding the genetic-epigenetic interplay and future prospects. Environmental Research, 147, 425–434.Google Scholar
  13. Bish, D. L. (1994). Quantitative X-ray diffraction analysis of soils. Quantitative methods in soil mineralogy, (quantitativemet), 267–295.Google Scholar
  14. Bish, D. L., & Post, J. E. (1993). Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. The American Mineralogist, 78(9–10), 932–940.Google Scholar
  15. Borm, P. J. A., Kelly, F., Künzli, N., Schins, R. P. F., & Donaldson, K. (2007). Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occupational and Environmental Medicine, 64(2), 73–74.Google Scholar
  16. Boyd, J. T., Doll, R., Faulds, J. S., & Leiper, J. (1970). Cancer of the lung in iron ore (haematite) miners. British Journal of Industrial Medicine, 27(2), 97–105.Google Scholar
  17. Brunner, W. M., Williams, A. N., & Bender, A. P. (2008). Investigation of exposures to commercial asbestos in northeastern Minnesota iron miners who developed mesothelioma. Regulatory Toxicology and Pharmacology, 52(1), S116–S120.Google Scholar
  18. Chakraborty, M. K., Ahmad, M., Singh, R. S., Pal, D., Bandopadhyay, C., & Chaulya, S. K. (2002). Determination of the emission rate from various opencast mining operations. Environmental Modelling and Software, 17(5), 467–480.Google Scholar
  19. Chau, N., Benamghar, L., Pham, Q. T., Teculescu, D., Rebstock, E., & Mur, J. M. (1993). Mortality of iron miners in Lorraine (France): Relations between lung function and respiratory symptoms and subsequent mortality. British Journal of Industrial Medicine, 50(11), 1017–1031.Google Scholar
  20. Chen, S. Y., Hayes, R. B., Liang, S. R., Li, Q. G., Stewart, P. A., & Blair, A. (1990). Mortality experience of haematite mine workers in China. British Journal of Industrial Medicine, 47(3), 175–181.Google Scholar
  21. Chipera, S. J., & Bish, D. L. (2013). Fitting full X-ray diffraction patterns for quantitative analysis: A method for readily quantifying crystalline and disordered phases. Advances in Materials Physics and Chemistry, 3(1A), 30340. doi: 10.4236/ampc.2013.31A007.CrossRefGoogle Scholar
  22. Chuang, H.-C., BéruBé, K., Lung, S.-C. C., Bai, K.-J., & Jones, T. (2013). Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion. Journal of Hazardous Materials, 244, 142–150.Google Scholar
  23. Clemente, R., Paredes, C., & Bernal, M. P. (2007). A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agriculture, Ecosystems & Environment, 118(1), 319–326.Google Scholar
  24. Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., et al. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.Google Scholar
  25. Davies, T. C., & Mundalamo, H. R. (2010). Environmental health impacts of dispersed mineralisation in South Africa. Journal of African Earth Sciences, 58(4), 652–666.Google Scholar
  26. Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.Google Scholar
  27. Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D. L., Schauer, J. J., & Shafer, M. M. (2013). Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Science & Environmental Epidemiology, 23(5), 466–473.Google Scholar
  28. Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14(10), 1371–1377.Google Scholar
  29. Eberl, D. D. (2003). User guide to RockJock-A program for determining quantitative mineralogy from X-ray diffraction data. US Geological Survey.Google Scholar
  30. Eby, G. N. (2004). Principles of environmental geochemistry. USA:Brooks/Cole Publishing Company.Google Scholar
  31. Ehrlich, R. I., Churchyard, G. J., Pemba, L., Dekker, K., Vermeis, M., White, N. W., et al. (2006). Tuberculosis and silica exposure in South African gold miners. Occupational and Environmental Medicine, 63(3), 187–192.Google Scholar
  32. EPA. (1987). Asbestos-containing materials in schools, U.S. Environmental Protection Agency. Federal Register 40CFR 763.Google Scholar
  33. EPA. (2006). National ambient air quality standards for particulate matter; Final rule. Environmental Protection Agency Part II, 40 CFR Part 50.Google Scholar
  34. Fantel, A. G. (1996). Reactive oxygen species in developmental toxicity: Review and hypothesis. Teratology, 53(3), 196–217.Google Scholar
  35. Gibbons, W. (2000). Amphibole asbestos in Africa and Australia: Geology, health hazard and mining legacy. Journal of the Geological Society, 157(4), 851–858.Google Scholar
  36. Godri, K. J., Duggan, S. T., Fuller, G. W., Baker, T., Green, D., Kelly, F. J., et al. (2010a). Particulate matter oxidative potential from waste transfer station activity. Environmental Health Perspectives, 118(4), 493.Google Scholar
  37. Godri, K. J., Green, D. C., Fuller, G. W., Dall’sOsto, M., Beddows, D. C., Kelly, F. J., et al. (2010b). Particulate oxidative burden associated with firework activity. Environmental Science and Technology, 44(21), 8295–8301.Google Scholar
  38. Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I. S., et al. (2011). Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS ONE, 6(7), e21961.Google Scholar
  39. Hendryx, M. (2009). Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. International Archives of Occupational and Environmental Health, 82(2), 243–249.Google Scholar
  40. Heydari, E. (2008). Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451(1), 56–70.Google Scholar
  41. Hosseini, S. A., & Asghari, O. (2016). Multivariate geostatistical simulation of the Gole Gohar iron ore deposit, Iran. Journal of the Southern African Institute of Mining and Metallurgy, 116(5), 423–430.Google Scholar
  42. Iriyama, K., Yoshiura, M., Iwamoto, T., & Ozaki, Y. (1984). Simultaneous determination of uric and ascorbic acids in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection. Analytical Biochemistry, 141(1), 238–243.Google Scholar
  43. Jahanshahi, R., & Zare, M. (2015). Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area, Iran. Environmental Earth Sciences, 74(1), 505–520.Google Scholar
  44. Janssen, N. A. H., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M. E., et al. (2014). Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment, 472, 572–581.Google Scholar
  45. Jolicoeur, C. R., Alary, J., Sokov, A. (1992). Asbestos. Kirk-Othmer Encyclopedia of Chemical Technology. doi: 10.1002/0471238961.0119020510151209.a01.CrossRefGoogle Scholar
  46. Kamp, D. W., & Weitzman, S. A. (1999). The molecular basis of asbestos induced lung injury. Thorax, 54(7), 638–652.Google Scholar
  47. Kaur, H., & Halliwell, B. (1990). Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chemico-Biological Interactions, 73(2–3), 235–247.Google Scholar
  48. Kelly, F., Anderson, H. R., Armstrong, B., Atkinson, R., Barratt, B., Beevers, S., et al. (2011). The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Research Report (Health Effects Institute), 155, 5–71.Google Scholar
  49. Kinlen, L. J., & Willows, A. N. (1988). Decline in the lung cancer hazard: A prospective study of the mortality of iron ore miners in Cumbria. British Journal of Industrial Medicine, 45(4), 219–224.Google Scholar
  50. Klein, C., Hurlbut, C. S., & Dana, J. D. (1993). Manual of mineralogy. New York: Wiley.Google Scholar
  51. Klein, C., Hurlbut, C. S., & Dana, J. D. (2002). The 22nd edition of the manual of mineral science:(after James D. Dana).Google Scholar
  52. Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook, S., et al. (2006). Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM 2.5 collected at 20 European sites. Environmental health perspectives, 114(5), 684–690.Google Scholar
  53. Lal, B., & Tripathy, S. S. (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research, 3(2), 211–218.Google Scholar
  54. Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455.Google Scholar
  55. Liu, G., Cheresh, P., & Kamp, D. W. (2013). Molecular basis of asbestos-induced lung disease. Annual Review of Pathology, 8, 161.Google Scholar
  56. Love, R. G., Miller, B. G., Groat, S. K., Hagen, S., Cowie, H. A., Johnston, P. P., et al. (1997). Respiratory health effects of opencast coalmining: A cross sectional study of current workers. Occupational and Environmental Medicine, 54(6), 416–423.Google Scholar
  57. Mannetje, A., Steenland, K., Attfield, M., Boffetta, P., Checkoway, H., DeKlerk, N., et al. (2002). Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts. Occupational and Environmental Medicine, 59(11), 723–728.Google Scholar
  58. Meyer, C., Du Plessis, J. J. L., & Oberholzer, J. W. (1996). Handbook to reduce the exposure of workers to dust. Safety in Mines Research Advisory Committee, COL 027, pp 1–157.Google Scholar
  59. Mirnejad, H., Simonetti, A., & Molasalehi, F. (2011). Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran. Ore Geology Reviews, 39(4), 181–187.Google Scholar
  60. Monjezi, M., Shahriar, K., Dehghani, H., & Samimi Namin, F. (2009). Environmental impact assessment of open pit mining in Iran. Environmental Geology, 58, 205–216.Google Scholar
  61. Mücke, A., Golestaneh, F. (1982). The genesis of the Gol Gohar iron ore deposit (Iran). Institu fur Mineralogie und Kritallographieder Technischen Universitat Berlin, 41, 193–212.Google Scholar
  62. Mücke, A., & Younessi, R. (1994). Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineralogy and Petrology, 50(4), 219–244.Google Scholar
  63. Mudway, I. S., Stenfors, N., Duggan, S. T., Roxborough, H., Zielinski, H., Marklund, S. L., et al. (2004). An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives of Biochemistry and Biophysics, 423(1), 200–212.Google Scholar
  64. Muzembo, B. A., Deguchi, Y., Ngatu, N. R., Eitoku, M., Hirota, R., & Suganuma, N. (2015). Selenium and exposure to fibrogenic mineral dust: A mini-review. Environment International, 77, 16–24.Google Scholar
  65. Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., & Ghaderi, M. (2015). Iron and Fe–Mn mineralisation in Iran: Implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211–241.Google Scholar
  66. Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308(5723), 804–806.Google Scholar
  67. Neuendorf, K. K. E. (2005). Glossary of geology. New York: Springer Science & Business Media.Google Scholar
  68. Noonan, C. W., Pfau, J. C., Larson, T. C., & Spence, M. R. (2006). Nested case-control study of autoimmune disease in an asbestos-exposed population. Environmental health perspectives, 114(8), 1243–1247.Google Scholar
  69. OSHA. (1986). Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite: Final Rules. Federal Register (Vol. 51).Google Scholar
  70. OSHA. (1998). Occupational Safety and Health Administration, Code of Federal Regulations. 29 CFR 1910.1001.Google Scholar
  71. Park, S. S., & Wexler, A. S. (2008). Size-dependent deposition of particles in the human lung at steady-state breathing. Journal of Aerosol Science, 39(3), 266–276.Google Scholar
  72. Patra, A. K., Gautam, S., & Kumar, P. (2016). Emissions and human health impact of particulate matter from surface mining operation—A review. Environmental Technology & Innovation, 5, 233–249.Google Scholar
  73. Petavratzi, E., Kingman, S., & Lowndes, I. (2005). Particulates from mining operations: A review of sources, effects and regulations. Minerals Engineering, 18(12), 1183–1199.Google Scholar
  74. Pfau, J. C., Sentissi, J. J., Weller, G., & Putnam, E. A. (2005). Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA. Environmental Health Perspectives, 113(1), 25–30.Google Scholar
  75. Phillips, J. (2013). The application of a mathematical model of sustainability to the results of a semi-quantitative environmental impact assessment of two iron ore opencast mines in Iran. Applied Mathematical Modelling, 37(14), 7839–7854.Google Scholar
  76. Plumlee, G. S., Morman, S. A., & Ziegler, T. L. (2006). The toxicological geochemistry of earth materials: An overview of processes and the interdisciplinary methods used to understand them. Reviews in Mineralogy and Geochemistry, 64(1), 5–57.Google Scholar
  77. Rietveld, H. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.Google Scholar
  78. Ross, M., Nolan, R. P., & Nord, G. L. (2008). The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota. Regulatory Toxicology and Pharmacology, 52(1), S43–S50.Google Scholar
  79. Ross, M., & Virta, R. L. (2001). Occurrence, production and uses of asbestos. Canadian Mineralogist Special Publications, 5, 79–88.Google Scholar
  80. Saadat, M., Khandelwal, M., & Monjezi, M. (2014). An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 67–76. doi: 10.1016/j.jrmge.2013.11.001.CrossRefGoogle Scholar
  81. Sabzehei, M., Eshraghi, S. A., Roshan Ravan, J., & Seraj, M. (1997). Geological map of Gole Gohar area, scale 1:100,000.Google Scholar
  82. Saeidi, O., Torabi, S. R., Ataei, M., & Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics and Mining Sciences, 68, 55–65.Google Scholar
  83. Sahai, N., Schoonen, M. A. A., & Skinner, H. C. W. (2006). The emergent field of medical mineralogy and geochemistry. Reviews in Mineralogy and Geochemistry, 64(1), 1–4.Google Scholar
  84. Shah, C. P. (2003). Public health and preventive medicine in Canada. WB Saunders Company Canada Limited.Google Scholar
  85. Shi, T., Knaapen, A. M., Begerow, J., Birmili, W., Borm, P. J. A., & Schins, R. P. F. (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occupational and Environmental Medicine, 60(5), 315–321.Google Scholar
  86. Singh, G., Pal, A., & Khoiyanbam, R. S. (2009). Impact of mining on human health in and around Jhansi, Bundelkhand region of Uttar Pradesh, India. Journal of Ecophysiology and Occupational Health, 9(1/2), 47.Google Scholar
  87. Sinha, S., & Banerjee, S. P. (1997). Characterization of haul road dust in an Indian opencast iron ore mine. Atmospheric Environment, 31(17), 2809–2814.Google Scholar
  88. Skinner, H. C. W., Ross, M., & Frondel, C. (1988). Asbestos and other fibrous materials: Mineralogy, crystal chemistry, and health effects. Oxford: Oxford University Press.Google Scholar
  89. Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175(1), 896–914.Google Scholar
  90. Szigeti, T., Kertész, Z., Dunster, C., Kelly, F. J., Záray, G., & Mihucz, V. G. (2014). Exposure to PM 2.5 in modern office buildings through elemental characterization and oxidative potential. Atmospheric Environment, 94, 44–52.Google Scholar
  91. US Public Health, & Services, U. S. D. of H. and H. (2001). Toxicological profile for asbestos. Atlanta, GA: Agency for Toxic Substances and Disease Registry.Google Scholar
  92. USEPA. (1999). Speciation Guidance (Final Draft). US Environmental Protection Agency: Research Triangle Park, NC.Google Scholar
  93. USEPA. (2011). National Ambient Air Quality Standards (NAAQS). US Environmental Protection Agency: Research Triangle Park, NC. Washington, D.C.Google Scholar
  94. Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.Google Scholar
  95. Veblen, D. R., & Wylie, A. G. (1993). Mineralogy of amphiboles and 1: 1 layer silicates. Washington, DC (United States): Mineralogical Society of America.Google Scholar
  96. WHO. (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.Google Scholar
  97. Wild, P., Bourgkard, E., Paris, C. (2009). Lung cancer and exposure to metals: The epidemiological evidence. Cancer Epidemiology: Modifiable Factors, 472, 139–167.Google Scholar
  98. Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., et al. (2005). Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Economic Geology, 100th Anniversary Volume, 371–405.Google Scholar
  99. Wylie, A. G., & Verkouteren, J. R. (2000). Amphibole asbestos from Libby, Montana: Aspects of nomenclature. American Mineralogist, 85(10), 1540–1542.Google Scholar
  100. Zielinski, H., Mudway, I. S., Bérubé, K. A., Murphy, S., Richards, R., & Kelly, F. J. (1999). Modeling the interactions of particulates with epithelial lining fluid antioxidants. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277(4), L719–L726.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Naghmeh Soltani
    • 1
    Email author
  • Behnam Keshavarzi
    • 1
  • Armin Sorooshian
    • 2
    • 3
  • Farid Moore
    • 1
  • Christina Dunster
    • 4
  • Ana Oliete Dominguez
    • 4
  • Frank J. Kelly
    • 4
  • Prakash Dhakal
    • 5
  • Mohamad Reza Ahmadi
    • 6
  • Sina Asadi
    • 1
  1. 1.Department of Earth Sciences, College of ScienceShiraz UniversityShirazIran
  2. 2.Department of Chemical and Environmental EngineeringUniversity of ArizonaTucsonUSA
  3. 3.Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonUSA
  4. 4.MRC-PHE Centre for Environment and HealthKing’s College LondonLondonUK
  5. 5.Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucsonUSA
  6. 6.Gol-E-Gohar Iron Ore and Steel Research InstituteGol-E-Gohar Mining and Industrial Co.SirjanIran

Personalised recommendations