Environmental Geochemistry and Health

, Volume 40, Issue 4, pp 1299–1316 | Cite as

Development of the “rare-earth” hypothesis to explain the reasons of geophagy in Teletskoye Lake are kudurs (Gorny Altai, Russia)

  • Alexander M. Panichev
  • Ivan V. SeryodkinEmail author
  • Yuri N. Kalinkin
  • Raisa A. Makarevich
  • Tatiana A. Stolyarova
  • Alexander A. Sergievich
  • Pavel P. Khoroshikh
Original Paper


The mineral and chemical composition of the liquid and lithogenous substances, consumed by the wild ungulate animals, at the kudurs of the Teletskoye Lake, Gorny Altai, Russia, was studied. It was investigated that all examined kudurits are argillous-aleurolitic and get in the interval from 1 to 100 μm with the predominance of the fraction 10 μm. By the mineral composition, the lithogenous kudurits present the quartz-feldspathic-hydromicaceous-chloritic mineral formations with the large content of the quartz particles (20–43%) and sodium-containing plagioclases (albite, 15–32 wt%). The lithogenous kudurits are the products of the reconstitution of the metamorphic cleaving stones as a result of the glacier abrasive effect, subsequent its aqueous deposits and then eolation in the subaerial conditions. The fontinal waters consumed at the kudurs are subsaline chloride-hydrocarbonate-sodium and sulphated-hydrocarbonate-calcium types. It essentially differs by the increased content of rare-earth elements in reference to the lake water. The acid (HCl, pH-1) extracts from the kudurits more actively extract calcium (10–35% of the gross contents; sodium extracts at the level of 1–3%). The most fluent in the microelements composition are Cu, Be, Sr, Co, Cd, Pb, Sc, Y and rare-earth elements. The transit of all these elements into the dissoluted form fluctuates about 10% from the gross contents. The reason of geophagy is related to tendency of herbivores to absorb mineralized subsoils enriched by the biologically accessible forms of rare-earth elements, arisen as a result of vital activity of specific microflora.


Kudurs Geophagy Geology Geochemistry Gorny Altai 


  1. Barmettler, F., Castelberg, C., Fabbri, C., & Brandl, H. (2016). Microbial mobilization of rare earth elements (REE) from mineral solids—A mini review. AIMS Microbiology, 2(2), 190–204.CrossRefGoogle Scholar
  2. Bgatov, V. I., Panichev, A. M., Sobanskii, G. G., Van, A. V., & Budnikov, IV. (1988). Animal licks in Siberian Mountains. Bulletin of Moscow Society of Nature Investigators. Department of Biology, 93(2), 42–53. (in Russian).Google Scholar
  3. Butvilovskii, V. V. (1993). Paleography of last glaciation and Holocene of Altai: Event-catastrophic model. Tomsk: Tomsk State University. (in Russian).Google Scholar
  4. Cowan, I. Mc T, & Brink, V. C. (1949). Natural game licks in the Rocky Mountain National Parks of Canada. Journal of Mammalogy, 30(4), 379–387.CrossRefGoogle Scholar
  5. Dalke, P. D., Beeman, R. D., Kindel, F. J., Robel, R. J., & Williams, T. R. (1965). Use of salt by elk in Idaho. Journal of Wildlife Management, 29, 319–332.CrossRefGoogle Scholar
  6. Dowding, J. M., Song, W., Bossy, K., Karakoti, A., Kumar, A., Kim, A., et al. (2014). Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death and Differentiation, 21, 1622–1632.CrossRefGoogle Scholar
  7. Ermakov, V. V., & Tyutikov, S. F. (2008). Geochemical ecology of animals. Moscow: Nauka. (in Russian).Google Scholar
  8. Fraser, D., & Reardon, E. (1980). Attraction of wild ungulates to mineral-rich springs in central Canada. Holarctic Ecology, 3, 36–40.Google Scholar
  9. Gilardi, J. D., Duffey, S. S., Munn, C. A., & Tell, L. A. (1999). Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. Journal of Chemical Ecology, 25, 897–919.CrossRefGoogle Scholar
  10. He, M. L., Ranz, D., & Rambeck, W. A. (2003). Effect of dietary rare earth elements on growth performance and blood parameters of rats. Journal of Animal Physiology and Animal Nutrition, 87, 1–7.CrossRefGoogle Scholar
  11. Hebert, D., & Cowan, I. M. (1971). Natural saltlicks as a part of the ecology of the mountain goat. Canadian Journal of Zoology, 49, 605–610.CrossRefGoogle Scholar
  12. Houston, D. C., Gilardi, J. D., & Hall, A. J. (2001). Soil consumption by elephants might help to minimize the toxic effects of plant secondary compounds in forest browse. Mammal Review, 31(3–4), 249–254.CrossRefGoogle Scholar
  13. Klaus, G., & Schmid, B. (1998). Geophagy at natural licks and mammal ecology: A review. Mammalia, 62, 481–497.CrossRefGoogle Scholar
  14. Kovalskii, V. V. (1974). Geochemical ecology. Moscow: Nauka. (in Russian).Google Scholar
  15. Kreulen, D. A. (1985). Lick use by large herbivores: A review of benefits and banes of soil consumption. Mammal Review, 15, 107–123.CrossRefGoogle Scholar
  16. Maloletko, A. M. (2009). Teletskoye Lake research 1973–1975. Tomsk: Tomsk State University. (in Russian).Google Scholar
  17. Martinelli, A., Marinho, T. S., de Vasconcellos, F. M., dos Santos, C. M., Ribeiro, L. C. B., dos Santos, S. M., et al. (2013). Tooth marks of mammalian incisors on rocky substrate in Brazil: Evidence of geophagy in the Cerrado Biome. Ichnos, 20(4), 173–180.CrossRefGoogle Scholar
  18. Mattson, D. J., Green, G. I., & Swalley, R. (1999). Geophagy by Yellowstone grizzly bears. Ursus, 11, 109–116.Google Scholar
  19. Moe, S. R. (1993). Mineral content and wildlife use of soil licks in southwestern Nepal. Canadian Journal of Zoology, 71, 933–936.CrossRefGoogle Scholar
  20. Murie, A. (1934). The moose of Isle Royale. Ann Arbor: Miscellaneous Publication 25. University of Michigan, Museum of Zoology: University of Michigan Press.Google Scholar
  21. Nasimovich, A. A. (1938). To knowledge of mineral feeding of wild animals in Caucasian Reserve. Proceedings Caucasian Reserve, 1, 103–150. (in Russian).Google Scholar
  22. Oates, J. F. (1978). Water-plant and soil consumption by Guereza Monkeys (Colobus guereza): A relationship with minerals and toxins in the diet? Biotropica, 10, 241–253.CrossRefGoogle Scholar
  23. Panichev, A. M. (1990). Geophagy in the worlds of animals and humans. Moscow: Nauka. (in Russian).Google Scholar
  24. Panichev, A. M. (2015). Rare earth elements: Review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagy reasons evaluation. Achievements in the Life Sciences, 9, 95–103.CrossRefGoogle Scholar
  25. Panichev, A. M. (2016). Geophagy: Causes of phenomenon. Priroda, 4, 25–35. (in Russian).Google Scholar
  26. Panichev, A. M., Golokhvast, K. S., Gulkov, A. N., & Chekryzhov, I Yu. (2013). Geophagy and geology of mineral licks (kudurs): A review of Russian publications. Environmental Geochemistry and Health, 35(1), 133–152.CrossRefGoogle Scholar
  27. Panichev, A. M., Popov, V. K., Chekryzhov, I Yu., Seryodkin, I. V., Sergievich, A. A., & Golokhvast, K. S. (2017). Geological nature of mineral licks and the reasons for geophagy among animals. Biogeosciences, 14, 2767–2779.CrossRefGoogle Scholar
  28. Panichev, A. M., Popov, V. K., Chekryzhov, I Yu., Seryodkin, I. V., Stolyarova, T. A., Zakusin, S. V., et al. (2016). Rare earth elements upon assessment of reasons of the geophagy in Sikhote-Alin region (Russian Federation), Africa and other world regions. Environmental Geochemistry and Health, 38, 1255–1270.CrossRefGoogle Scholar
  29. Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M., et al. (2014). Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology, 16, 255–264.CrossRefGoogle Scholar
  30. Puzanov, A. V., Elchaninova, O. A., & Rozhdestvenskaya, T. A. (2015). To 85th birthday of M.A. Mal’gyn—prominent scientist in field of biochemistry, agrochemistry, soil science, ecology. In Biogeochemistry of technogenesis and modern problems of geochemical ecology. Proceedings of IX international biogeochemical school (Vol. 1, pp. 13–16) (in Russian).Google Scholar
  31. Ramachandran, K. K., Balagopalan, M., & Vijayakumaran Nayr, P. (1995). Use pattern and chemical characterization of the natural salt licks in Chinnar wildlife sanctuary (Research report 94). Thrissur: Kerala forest research institute Peechi.Google Scholar
  32. Raman Kutty, V., Abraham, S., & Kartha, C. C. (1996). Geographical Distribution of Endomyocardial Fibrosis in South Kerala. International Epidemiological Association, 25(6), 1202–1207.CrossRefGoogle Scholar
  33. Seryodkin, I. V., Panichev, A. M., & Slaght, J. C. (2016). Geophagy by brown bears in the Russian Far East. Ursus, 27(1), 11–17.CrossRefGoogle Scholar
  34. Shaposhnikov, F. D. (1953). On the soil alkalinity of wild ungulate animals in mountain-taiga Altai. Bulletin of Moscow Society of Nature Investigators. Department of Biology, 58(1), 3–10. (in Russian).Google Scholar
  35. Shevchenko, G. A. (2010). Geoecological state of water area and littoral zone of Teletskoye Lake (Gorny Altai). Ph.D. Thesis, Tomsk, Russia (in Russian).Google Scholar
  36. Shivakumar, K., Renuka Nair, R., & Valiathan, M. S. (1992). Paradoxical effect of cerium on collagen synthesis in cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 24(7), 775–780.CrossRefGoogle Scholar
  37. Sun, S. S., & Mcdonough, W. F. (1989). Chemical and isotopic systematics of ocean basalts implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in Ocean Basins (Vol. 42, pp. 313–345). London: Geol. Soc.Google Scholar
  38. Takahashi, Y., Chatellier, X., Hattori, K. H., Kato, K., & Fortin, D. (2005). Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chemical Geology, 219, 53–67.CrossRefGoogle Scholar
  39. Takahashi, Y., Hirata, T., Shimizu, H., Ozaki, T., & Fortin, D. (2007). A rare earth element signature of bacteria in natural waters? Chemical Geology, 244(3), 569–583.CrossRefGoogle Scholar
  40. Vasilchuk, J. Y. (2015). Geochemical factors of carbonate profile formation of soils in cryo-arid landscapes of Ak-Khol Lake basin. In Biogeochemistry of technogenesis and modern problems of geochemical ecology. Proceedings of IX international biogeochemical school (Vol. 1, pp. 178–180) (in Russian).Google Scholar
  41. Vermeer, D. E., & Ferrell, R. E. (1985). Nigerian geophagical clay: A traditional anti-diarrhoeal pharmaceutical. Science, 227, 634–636.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Alexander M. Panichev
    • 1
    • 2
  • Ivan V. Seryodkin
    • 1
    • 2
    Email author
  • Yuri N. Kalinkin
    • 3
  • Raisa A. Makarevich
    • 1
  • Tatiana A. Stolyarova
    • 4
  • Alexander A. Sergievich
    • 2
  • Pavel P. Khoroshikh
    • 2
  1. 1.Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia
  3. 3.Altai State Nature Biosphere ReserveGorno-AltaiskRussia
  4. 4.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations