Environmental Geochemistry and Health

, Volume 40, Issue 4, pp 1187–1208 | Cite as

Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran

  • Ali Najmeddin
  • Behnam KeshavarziEmail author
  • Farid Moore
  • Ahmadreza Lahijanzadeh
Original Paper


This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal–Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.


Pollution assessment Urban dust pollution Multivariate statistics Positive matrix factorization Industrial activities 



This research was financially supported by the Khuzestan Environmental Protection Office. The authors wish to express their gratitude to the Research Committee and Medical Geology Center of Shiraz University for logistic help.


  1. Abdelhafez, A. A., & Li, J. (2014). Geochemical and statistical evaluation of heavy metal status in the region around Jinxi River, China. Soil and Sediment Contamination: An International Journal, 23, 850–868. doi: 10.1080/15320383.2014.887651.CrossRefGoogle Scholar
  2. Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martínez-Martínez, S. (2014). Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. Journal of Geochemical Exploration, 144, 298–305. doi: 10.1016/j.gexplo.2014.02.004.CrossRefGoogle Scholar
  3. Ahmed, F., & Ishiga, H. (2006). Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmospheric Environment, 40, 3835–3844. doi: 10.1016/j.atmosenv.2006.03.004.CrossRefGoogle Scholar
  4. Alavi, M. (2004). Regional stratigraphy of the zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, 1–20. doi: 10.2475/ajs.304.1.1.CrossRefGoogle Scholar
  5. Ali, M., Mustafa, A. A., & El-Sheikh, A. A. (2016). Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environmental Earth Sciences, 75, 1257–1274. doi: 10.1007/s12665-016-6047-x.CrossRefGoogle Scholar
  6. Alloway, B. (2010). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Berlin: Springer.Google Scholar
  7. Bourliva, A., Papadopoulou, L., & Aidona, E. (2016). Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Science of the Total Environment, 553, 380–391. doi: 10.1016/j.scitotenv.2016.02.149.CrossRefGoogle Scholar
  8. CCME. (2007). Canadian soil quality guidelines for the protection of environmental and human health. Winnipeg: Canadian Council of Ministers of the Environment.Google Scholar
  9. Charlesworth, S., Everett, M., McCarthy, R., Ordonez, A., & de Miguel, E. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29, 563–573. doi: 10.1016/S0160-4120(03)00015-1.CrossRefGoogle Scholar
  10. Cowherd, C., Muleski, G., Engelhart, P., & Gillete, D. (1985). Rapid assessment of exposure to particulate emissions from surface contamination. Prepared for EPA Office of Health and Environmental Assessment, EPA/600/8-85/002.Google Scholar
  11. Davami, A. H., Moharamnejad, N., Monavari, S. M., & Shariat, M. (2014). An urban solid waste landfill site evaluation process incorporating GIS in local scale environment: A case of Ahvaz city, Iran. International Journal of Environmental Research, 8(4), 1011–1018.Google Scholar
  12. Dehghani, Sh, Moore, F., Keshavarzi, B., & Hale, B. A. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92–103. doi: 10.1016/j.ecoenv.2016.10.037.CrossRefGoogle Scholar
  13. Ewen, C., Anagnostopoulou, M. A., & Ward, N. I. (2009). Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow. Environmental Monitoring and Assessment, 157, 483–498. doi: 10.1007/s10661-008-0550-9.CrossRefGoogle Scholar
  14. Farmer, J. G., Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Graham, M. C., et al. (2011). A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Science of the Total Environment, 409, 4958–4965. doi: 10.1016/j.scitotenv.2011.08.061.CrossRefGoogle Scholar
  15. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512. doi: 10.1016/j.atmosenv.2005.03.026.CrossRefGoogle Scholar
  16. Gallego, J. L., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596. doi: 10.1016/S0160-4120(01)00115-5.CrossRefGoogle Scholar
  17. Ghebrehewet, S., & Stewart, A. G. (2016). Incidents and outbreak management. In S. Ghebrehewet, A. G. Stewart, D. Baxter, P. Shears, D. Conrad, & M. Kliner (Eds.), Health protection: Principles and practice (pp. 204–215). Oxford: Oxford University Press.Google Scholar
  18. Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491–2504. doi: 10.1007/s11356-014-3696-8.CrossRefGoogle Scholar
  19. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. doi: 10.1016/0043-1354(80)90143-8.CrossRefGoogle Scholar
  20. Hani, A., Sinaei, N., & Gholami, A. (2014). Spatial variability of heavy metals in the soils of Ahwaz using geostatistical methods. International Journal of Environmental Science and Development, 5(3), 294–298. doi: 10.7763/IJESD.2014.V5.495.CrossRefGoogle Scholar
  21. Harb, M. K., Ebqa’ai, M., Al-rashidi, A., Alaziqi, B. H., Al Rashdi, M. S., & Ibrahim, B. (2015). Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia. Environmental Earth Sciences, 74, 1755–1763. doi: 10.1007/s12665-015-4184-2.CrossRefGoogle Scholar
  22. Hiller, E., Lachká, L., Jurkovič, L., Ďurža, O., Fajčíková, K., & Vozár, J. (2016). Occurrence and distribution of selected potentially toxic elements in soils of playing sites: A case study from Bratislava, the capital of Slovakia. Environmental Earth Sciences, 75, 1390–1403. doi: 10.1007/s12665-016-6210-4.CrossRefGoogle Scholar
  23. Ho, R. (2013). Handbook of univariate and multivariate data analysis with IBM SPSS (2nd ed.). Boca Raton: CRC Press, Taylor & Francis Group.CrossRefGoogle Scholar
  24. Hu, B., Liu, B., Zhou, J., Guo, J., Sun, Z., Meng, W., et al. (2016). Health risk assessment on heavy metals in urban street dust of Tianjin based on trapezoidal fuzzy numbers. Human and Ecological Risk Assessment: An International Journal, 22, 678–692. doi: 10.1080/10807039.2015.1104625.CrossRefGoogle Scholar
  25. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, 1215–1221. doi: 10.1016/j.envpol.2011.01.037.CrossRefGoogle Scholar
  26. Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., et al. (2015). An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials, 299, 540–549. doi: 10.1016/j.jhazmat.2015.07.041.CrossRefGoogle Scholar
  27. Huang, S., Tu, J., Liu, H., Hua, M., Liao, Q., Feng, J., et al. (2009). Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmospheric Environment, 43, 5781–5790. doi: 10.1016/j.atmosenv.2009.07.055.CrossRefGoogle Scholar
  28. IDOE (Iran Department of Environment). (2014). Iranian soil quality guidelines for the protection of environmental and human health. Iranian Department of Environment, Tehran (in Persian).
  29. IDOE (Iran Department of Environment). (2015). Gasoline and air quality. Iranian Department of Environment, Tehran (in Persian).
  30. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., et al. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668. doi: 10.1016/j.chemosphere.2016.11.088.CrossRefGoogle Scholar
  31. Kartal, S., Aydin, Z., & Tokalıoğlu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132(1), 80–89. doi: 10.1016/j.jhazmat.2005.11.091.CrossRefGoogle Scholar
  32. Keshavarzi, B., Moore, F., Najmeddin, A., Rahmani, F., & Malekzadeh, A. (2012). Quality of drinking water and high incidence rate of esophageal cancer in Golestan province of Iran: A probable link. Environmental Geochemistry and Health, 34(1), 15–26. doi: 10.1007/s10653-011-9377-3.CrossRefGoogle Scholar
  33. Keshavarzi, B., Tazarvi, Z., Rajabzadeh, M. A., & Najmeddin, A. (2015). Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment, 119, 1–10. doi: 10.1016/j.atmosenv.2015.08.001.CrossRefGoogle Scholar
  34. KPGO (Khuzestan Province Governor Office). (2011). Khuzestan Province statistical report. Ahvaz: Khuzestan Province, Governor Office.Google Scholar
  35. Krcmova, K., Robertson, D., Cveckova, V., & Rapant, S. (2009). Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia: Compositional and spatial assessment of contamination. Journal of Soils and Sediments, 9, 304–316. doi: 10.1007/s11368-009-0097-6.CrossRefGoogle Scholar
  36. Lau, W. K. Y., Liang, P., Man, Y. B., Chung, S. S., & Wong, M. H. (2014). Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China. Environmental Science and Pollution Research, 21, 3813–3825. doi: 10.1007/s11356-013-2372-8.CrossRefGoogle Scholar
  37. Li, F., Huang, J. H., Zeng, G. M., Yuan, X. Z., Liang, J., & Wang, X. Y. (2012). Multimedia health risk assessment: A case study of scenario-uncertainty. Journal of Central South University, 19(10), 2901–2909. doi: 10.1007/s11771-012-1357-y.CrossRefGoogle Scholar
  38. Li, F., Zhang, J., Huang, J., Huang, D., Yang, J., Song, Y., et al. (2016). Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environmental Science and Pollution Research, 23, 13100–13113. doi: 10.1007/s11356-016-6458-y.CrossRefGoogle Scholar
  39. Lin, M., Gui, H., Wang, Y., & Peng, W. (2017). Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environmental Science and Pollution Research, 24, 1987–1998. doi: 10.1007/s11356-016-7934-0.CrossRefGoogle Scholar
  40. Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476, 522–531. doi: 10.1016/j.scitotenv.2014.01.055.CrossRefGoogle Scholar
  41. Mahoney, G., Stewart, A. G., Kennedy, N., Whitely, B., Turner, L., & Wilkinson, E. (2015). Achieving attainable outcomes from good science in an untidy world: Case studies in land and air pollution. Environmental Geochemistry and Health, 37(4), 689–706. doi: 10.1007/s10653-015-9717-9.CrossRefGoogle Scholar
  42. Mashal, K., Salahat, M., Al-Qinna, M., & Al-Degs, Y. (2015). Spatial distribution of cadmium concentrations in street dust in an arid environment. Arabian Journal of Geosciences, 8, 3171–3182. doi: 10.1007/s12517-014-1367-1.CrossRefGoogle Scholar
  43. McKenzie, E. R., Wong, C. M., Green, P. G., Kayhanian, M., & Young, T. M. (2008). Size dependent elemental composition of road-associated particles. Science of the Total Environment, 398, 145–153. doi: 10.1016/j.scitotenv.2008.02.052.CrossRefGoogle Scholar
  44. Meza-Figueroa, D., O-Villanueva, M., & Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41, 276–288. doi: 10.1016/j.atmosenv.2006.08.034.CrossRefGoogle Scholar
  45. MOKP (Meteorological Organization of Khuzestan Province). (2010). Weather reports. Ahvaz: Meteorological Organization, Khuzestan Province.Google Scholar
  46. Moore, F., & Keshavarzi, B. (2014). Medical geology of Khuzestan Province (Phase 1). Iran Environmental Protection Agency (EPA), Khuzestan province: Internal Report. (in Persian).Google Scholar
  47. Nazzal, Y., Ghrefat, H., & Rosen, M. (2014). Application of multivariate geostatistics in the investigation of heavy metal contamination of roadside dusts from selected highways of the Greater Toronto Area, Canada. Environmental Earth Sciences, 71, 1409–1419. doi: 10.1007/s12665-013-2546-1.CrossRefGoogle Scholar
  48. NEPAC (National Environmental Protection Agency of China). (1995). Environmental quality standard for soils (GB 15618–1995) (in Chinese).Google Scholar
  49. Paatero, P., & Tapper, U. (1993). Analysis of different modes of factor analysis as least squares fit problems. Chemometrics and Intelligent Laboratory Systems, 18(2), 183–194. doi: 10.1016/0169-7439(93)80055-M.CrossRefGoogle Scholar
  50. Qi, L., & Gregoire, D. C. (2000). Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 24, 51–63. doi: 10.1111/j.1751-908X.2000.tb00586.x.CrossRefGoogle Scholar
  51. Rajaram, B. S., Suryawanshi, P. V., Bhanarkar, A. D., & Rao, C. V. (2014). Heavy metals contamination in road dust in Delhi city, India. Environmental Earth Sciences, 72(10), 3929–3938. doi: 10.1007/s12665-014-3281-y.CrossRefGoogle Scholar
  52. Rastegari Mehr, M., Keshavarzi, B., Moore, F., Sacchi, E., Lahijanzadeh, A. R., Eydivand, S., et al. (2016). Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Human and Ecological Risk Assessment: An International Journal, 22(8), 1726–1748. doi: 10.1080/10807039.2016.1219221.CrossRefGoogle Scholar
  53. Reff, A., Eberly, S., & Bhave, P. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air and Waste Management Association, 57(2), 146–154. doi: 10.1080/10473289.2007.10465319.CrossRefGoogle Scholar
  54. Rout, T. K., Masto, R. E., Ram, L. C., George, J., & Padhy, P. K. (2013). Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environmental Geochemistry and Health, 35(3), 347–356. doi: 10.1007/s10653-012-9499-2.CrossRefGoogle Scholar
  55. Rouzbahani, M. M., Ardakani, S., & Karimi, H. (2015). Determination of soil pollution using sediment geo-chemical indices. International Journal of Advances in Science Engineering and Technology, 5, 63–66.Google Scholar
  56. Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227–228, 9–17. doi: 10.1016/j.jhazmat.2012.04.047.CrossRefGoogle Scholar
  57. Sekhavatjou, M. S., Hosseini Alhashem, A. S., Taghavirad, S. S., Goudarzi, G., & Mollaee, A. R. (2011). Seasonal variation of mercury vapor concentrations in industrial, residential, and traffic areas of Ahvaz city, Southwest Iran. African Journal of Biotechnology, 10(57), 12232–12236. doi: 10.5897/AJB11.2033.CrossRefGoogle Scholar
  58. Shahsavani, A., Naddafi, K., Jafarzade Haghighifard, N., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., et al. (2012). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. Journal of Arid Environments, 77, 72–83. doi: 10.1016/j.jaridenv.2011.09.007.CrossRefGoogle Scholar
  59. Shi, G., Chen, Z., Bi, C., Li, Y., Teng, J., Wang, L., et al. (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environmental Pollution, 158, 694–703. doi: 10.1016/j.envpol.2009.10.020.CrossRefGoogle Scholar
  60. Shilton, V. F., Booth, C. A., Smith, J. P., Giess, P., Mitchell, D. J., & Williams, C. D. (2005). Magnetic properties of urban street dust and their relationship with organic matter content in the West Midlands, UK. Atmospheric Environment, 39, 3651–3659. doi: 10.1016/j.atmosenv.2005.03.005.CrossRefGoogle Scholar
  61. Smolders, E., & Degryse, F. (2002). Fate and effect of zinc from tire debris in soil. Environmental Science and Technology, 36(17), 3706–3710. doi: 10.1021/es025567p.CrossRefGoogle Scholar
  62. Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., et al. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723. doi: 10.1016/j.scitotenv.2014.09.097.CrossRefGoogle Scholar
  63. Statistical center of Iran. (2016). Results of the 2016 national population and housing census (industry section).
  64. Sutherland, R. A. (2000). A comparison of geochemical information obtained from two fluvial bed sediment fractions. Environmental Geology, 39, 330–341. doi: 10.1007/s002540050012.CrossRefGoogle Scholar
  65. Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry, 35, 88–98. doi: 10.1016/j.apgeochem.2013.03.016.CrossRefGoogle Scholar
  66. Tijhuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the city of Oslo, Norway. Environmental Geochemistry and Health, 24, 67–94. doi: 10.1023/A:1013979700212.CrossRefGoogle Scholar
  67. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575. doi: 10.1007/BF02414780.CrossRefGoogle Scholar
  68. USDOE (United States Department of Energy). (2004). RAIS: Risk assessment information system. U.S. Department of Energy (DOE), Office of Environmental Management, Oak Ridge Operations (ORO) Office. Accessed Sept 11, 2016, from
  69. USEPA. (1996). Soil screening guidance: Technical background document. Office of Solid Waste and Emergency Response (EPA/540/R-95/128).Google Scholar
  70. USEPA. (2001). Supplemental guidance for developing soil screening levels for superfund sites. Washington, DC: Office of Solid Waste and Emergency Response.Google Scholar
  71. USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. OSWER, 9355.4-24.Google Scholar
  72. USEPA. (2007). Concepts, methods and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: A resource document, EPA/600/R-06/013F. Cincinnati: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  73. USEPA. (2011). Exposure factors handbook: 2011 Edition. National Center for Environmental Assessment, Office of Research and Development, Washington, DC 20460, EPA/600/R-09/052F.Google Scholar
  74. USEPA. (2014). EPA positive matrix factorization (PMF) 5.0, fundamentals and user guide. Accessed May, 2014, from
  75. Valdez Cerda, E., Reyes, L. H., Alfaro Barbosa, J. M., Elizondo-Martinez, P., & Acuña-Askar, K. (2011). Contamination and chemical fractionation of heavy metals in street dust from the Metropolitan Area of Monterrey, Mexico. Environmental Technology, 32(10), 1163–1172. doi: 10.1080/09593330.2010.529466.CrossRefGoogle Scholar
  76. Van den Berg, R. (1994). Human exposure to soil contamination: A qualitative and quantitative analysis towards proposals for human toxicological intervention values. RIVM Report no. 725201011. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection (RIVM).Google Scholar
  77. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. doi: 10.1016/j.microc.2009.09.014.CrossRefGoogle Scholar
  78. Weldegebriel, Y., Chandravanshi, B. S., & Wondimu, T. (2012). Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicology and Environmental Safety, 77, 57–63. doi: 10.1016/j.ecoenv.2011.10.011.CrossRefGoogle Scholar
  79. Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108, 27–38. doi: 10.1016/j.gexplo.2010.09.006.CrossRefGoogle Scholar
  80. Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 335, 176–186. doi: 10.1016/j.scitotenv.2005.02.026.CrossRefGoogle Scholar
  81. Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Zia-ur-Rehman, M., Munir, M. A., et al. (2016). Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environmental Science and Pollution Research, 23, 22443–22453. doi: 10.1007/s11356-016-7449-8.CrossRefGoogle Scholar
  82. Yu, Y., Ma, J., Song, N., Wang, X., Wei, T., Yang, Z., et al. (2016). Comparison of metal pollution and health risks of urban dust in Beijing in 2007 and 2012. Environmental Monitoring and Assessment, 188, 657–668. doi: 10.1007/s10661-016-5658-8.CrossRefGoogle Scholar
  83. Zhao, N., Lu, X., & Chao, S. (2016). Risk assessment of potentially toxic elements in smaller than 100-µm street dust particles from a valley-city in northwestern China. Environmental Geochemistry and Health, 38, 483–496. doi: 10.1007/s10653-015-9734-8.CrossRefGoogle Scholar
  84. Zhao, L., Xu, Y., Hou, H., Shangguan, Y., & Li, F. (2013). Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Science of the Total Environment, 468–469, 654–662. doi: 10.1016/j.scitotenv.2013.08.094.CrossRefGoogle Scholar
  85. Zheng, Y. M., Chen, T. B., & He, J. Z. (2008). Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils and Sediments, 8, 51–58. doi: 10.1065/jss2007.08.245.CrossRefGoogle Scholar
  86. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408(4), 726–733. doi: 10.1016/j.scitotenv.2009.10.075.CrossRefGoogle Scholar
  87. Zhong, C., Yang, Z., Jiang, W., Hu, B., Hou, Q., Yu, T., et al. (2016). Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone. Science of the Total Environment, 573, 1519–1526. doi: 10.1016/j.scitotenv.2016.08.057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ali Najmeddin
    • 1
  • Behnam Keshavarzi
    • 1
    • 2
    Email author
  • Farid Moore
    • 1
    • 2
  • Ahmadreza Lahijanzadeh
    • 3
  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran
  2. 2.Medical Geology CenterShiraz UniversityShirazIran
  3. 3.Khuzestan Environmental Protection OfficeAhvazIran

Personalised recommendations