Environmental Geochemistry and Health

, Volume 40, Issue 2, pp 887–902 | Cite as

Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone

  • Dawit N. Bekele
  • Ravi Naidu
  • Sreenivasulu Chadalavada
Original Paper


Human health risk assessment at hydrocarbon-contaminated sites requires a critical evaluation of the exposure pathways of volatile organic compounds including assessments of vapor exposure in indoor air. Although there are a number of vapor intrusion models (VIM) currently available, they rarely reproduce actual properties of soils in the vadose zone. At best, users of such models assume averaged parameters for the vadose zone based on information generated elsewhere. The objective of this study was to develop a one-dimensional steady-state VIM, indoorCARE™ model, that considers vertical spatial variations of the degree of saturation (or effective air-filled porosity) and temperature of the vadose zone. The indoorCARE™ model was developed using a quasi-analytical equation that (1) solves the coupled equations governing soil–water movement driven by pressure head and a soil heat transport module describing conduction of heat and (2) provides a VIM that accommodates various types of conceptual site model (CSM) scenarios. The indoorCARE™ model is applicable to both chlorinated hydrocarbon and petroleum hydrocarbon (PHC) contaminated sites. The model incorporates biodegradations of PHCs at a range of CSM scenarios. The results demonstrate that predictions of indoor vapor concentrations made with the indoorCARE™ model are close to those of the J&E and BioVapor models under homogeneous vadose zone conditions. The newly developed model under heterogeneous vadose zone conditions demonstrated improved predictions of indoor vapor concentrations. The research study presented a more accurate and more realistic way to evaluate potential human health risks associated with the soil-vapor-to-indoor-air pathways.


Vapor intrusion model Site screening Risk assessment Spatial variation Volatile organic hydrocarbon 



Chlorinated hydrocarbon


Health screening level


Petroleum hydrocarbon


Natural attenuation


Non-aqueous phase liquid


Conceptual site model


Soil organic matter




Underground storage tank


Vapor intrusion


Vapor intrusion model


Volatile organic compound

Supplementary material

10653_2017_32_MOESM1_ESM.docx (162 kb)
Supplementary material 1 (DOCX 161 kb)


  1. Abreu, L. D., & Johnson, P. C. (2005). Effect of vapor source and building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environmental Science and Technology, 39(12), 4550–4561. doi: 10.1021/es049781k.CrossRefGoogle Scholar
  2. Abreu, L. D. V., & Johnson, P. C. (2006). Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: Influence of degradation rate, source concentration, and depth. Environmental Science and Technology, 40(7), 2304–2315. doi: 10.1021/es051335p.CrossRefGoogle Scholar
  3. Abreu, L. D. V., Ettinger, R., & McAlary, T. (2009). Simulated soil vapor intrusion attenuation factors including biodegradation for petroleum hydrocarbons. Ground Water Monitoring and Remediation, 29(1), 105–117. doi: 10.1111/j.1745-6592.2008.01219.x.CrossRefGoogle Scholar
  4. Abu-Hamdeh, N. H. (2003). Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86(1), 97–102.CrossRefGoogle Scholar
  5. Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64(4), 1285–1290. doi: 10.2136/sssaj2000.6441285x.CrossRefGoogle Scholar
  6. API. (2009). BioVapor, a 1-D vapor intrusion model with oxygen-limited aerobic biodegradation. American Petroleum Institute. http://www.api.org.
  7. Atteia, O., & Hohener, P. (2010). Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface. Environmental Science and Technology, 44(16), 6228–6232. doi: 10.1021/es903477f.CrossRefGoogle Scholar
  8. Becker, B. R., Misra, A., & Fricke, B. A. (1992). Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer; (United States), 19(1), 59–68.CrossRefGoogle Scholar
  9. Bekele, D. N., Naidu, R., Bowman, M., & Chadalavada, S. (2013). Vapor intrusion models for petroleum and chlorinated volatile organic compounds: Opportunities for future improvements. gsvadzone, 12(2). doi: 10.2136/vzj2012.0048.
  10. Bozkurt, O., Pennell, K. G., & Suuberg, E. M. (2009). Simulation of the vapor intrusion process for nonhomogeneous soils using a three-dimensional numerical model. Ground Water Monitoring and Remediation, 29(1), 92–104.CrossRefGoogle Scholar
  11. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Colorado State University, Fort Collins, Co (1964), Hydrology Paper No. 3 (p. 27).Google Scholar
  12. Chen, G. (2004). Reductive dehalogenation of tetrachloroethylene by microorganisms: Current knowledge and application strategies. Applied Microbiology and Biotechnology, 63(4), 373–377.CrossRefGoogle Scholar
  13. Cosenza, P., Guérin, R., & Tabbagh, A. (2003). Relationship between thermal conductivity and water content of soils using numerical modelling. European Journal of Soil Science, 54(3), 581–588. doi: 10.1046/j.1365-2389.2003.00539.x.CrossRefGoogle Scholar
  14. Davis, G. B., Rayner, J. L., Trefry, M. G., Fisher, S. J., & Patterson, B. M. (2005). Measurement and modeling of temporal variations in hydrocarbon vapor behavior in a layered soil profile. Vadose Zone Journal, 4(2), 225–239. doi: 10.2136/vzj2004.0029.CrossRefGoogle Scholar
  15. Davis, G. B., Trefry, M. G., & Patterson, B. M. (2009). Petroleum vapour model comparison. Adelaide, Australia: CRC for contamination assessment and remediation of the environment, March 2009, Technical Report No. 9.Google Scholar
  16. DeVaull, G. E. (2007). Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source. Environmental Science and Technology, 41(9), 3241–3248. doi: 10.1021/es060672a.CrossRefGoogle Scholar
  17. Environmental Quality Management (2004). User’s guide for evaluating subsurface vapor intrusion into buildings. (Vol. Work Assignment No. 004, pp. 12–13): U.S. Environmental Protection Agency Contract No. 68-W-02-33, Environmental Quality Management, Inc.: Durham, North Carolina, February 22, 2004.Google Scholar
  18. Fitzpatrick, N. A., & Fitzgerald, J. J. (2002). An evaluation of vapor intrusion into buildings through a study of field data. Soil and Sediment Contamination: An International Journal, 11(4), 603–623. doi: 10.1080/20025891107186.CrossRefGoogle Scholar
  19. Hers, I., Zapf-Gilje, R., Johnson, P. C., & Li, L. (2003). Evaluation of the Johnson and Ettinger model for prediction of indoor air quality. Ground Water Monitoring and Remediation, 23(2), 119–133.CrossRefGoogle Scholar
  20. Hers, I., Jourabchi, P., Lahvis, M. A., Dahlen, P., Luo, E. H., Johnson, P., et al. (2014). Evaluation of seasonal factors on petroleum hydrocarbon vapor biodegradation and intrusion potential in a cold climate. Groundwater Monitoring & Remediation, 34(4), 60–78. doi: 10.1111/gwmr.12085.CrossRefGoogle Scholar
  21. Hillel, D. (1982). Introduction to soil physics (pp. 155–175). New York: Academic Press.CrossRefGoogle Scholar
  22. Johnson, P. C., & Ettinger, R. A. (1991). Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25(8), 1445–1452. doi: 10.1021/es00020a013.CrossRefGoogle Scholar
  23. Jury, W. A., Russo, D., Streile, G., & El Abd, H. (1990). Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resoures Research, 26(1), 13–20. doi: 10.1029/WR026i001p00013.CrossRefGoogle Scholar
  24. Millington, R. J., & Quirk, J. P. (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200–1207.CrossRefGoogle Scholar
  25. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522. doi: 10.1029/WR012i003p00513.CrossRefGoogle Scholar
  26. Nazaroff, W. W., Lewis, S. R., Doyle, S. M., Moed, B. A., & Nero, A. V. (1987). Experiments on pollutant transport from soil into residential basements by pressure-driven airflow. Environmental Science and Technology, 21(5), 459–466. doi: 10.1021/es00159a006.CrossRefGoogle Scholar
  27. Ong, S. K., Culver, T. B., Lion, L. W., & Shoemaker, C. A. (1992). Effects of soil moisture and physical-chemical properties of organic pollutants on vapor-phase transport in the vadose zone. Journal of Contaminant Hydrology, 11(3–4), 273–290.CrossRefGoogle Scholar
  28. Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23(4), 618–624. doi: 10.1029/WR023i004p00618.CrossRefGoogle Scholar
  29. Pennell, K. G., Bozkurt, O., & Suuberg, E. M. (2009). Development and application of a three-dimensional finite element vapor intrusion model. Journal of the Air and Waste Management Association, 59(4), 447–460. doi: 10.3155/1047-3289.59.4.447.CrossRefGoogle Scholar
  30. Peters-Lidard, C. D., Blackburn, E., Liang, X., & Wood, E. F. (1998). The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences. doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2.Google Scholar
  31. Rivett, M. O., Wealthall, G. P., Dearden, R. A., & McAlary, T. A. (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, 123(3–4), 130–156.CrossRefGoogle Scholar
  32. Robinson, N. I., & Turczynowicz, L. (2005). One- and three-dimensional soil transportation models for volatiles migrating from soils to house interiors. Transport in Porous Media, 59(3), 301–323. doi: 10.1007/s11242-004-2554-4.CrossRefGoogle Scholar
  33. Sanders, P. F., & Talimcioglu, N. M. (1997). Soil-to-indoor air exposure models for volatile organic compounds: The effect of soil moisture. Environmental Toxicology and Chemistry, 16(12), 2597–2604. doi: 10.1002/etc.5620161223.CrossRefGoogle Scholar
  34. Scanlon, B. R., Nicot, J. P., & Massmann, J. W. (2002). Soil gas movement in unsaturated systems. In M. E. Sumner (Ed.), Handbook of soil sciences (pp. A297–A336). Boca Raton, FL: CRC Press.Google Scholar
  35. Schuver, H. (2007). Intrusion: Risks and challenges. Journal of the Air and Waste Management Association, 2007, 6–9. https://www.environmental-expert.com/Files/6477/articles/10879/schuver.pdf.
  36. Shen, R., Pennell, K. G., & Suuberg, E. M. (2013). Influence of soil moisture on soil gas vapor concentration for vapor intrusion. Environmental Engineering Science, 30(10), 628–637.CrossRefGoogle Scholar
  37. Siegel, L. (2009). Stakeholders’ views on vapor intrusion. Ground Water Monitoring and Remediation, 29(1), 53–57. doi: 10.1111/j.1745-6592.2008.01214.x.CrossRefGoogle Scholar
  38. Tillman, F. D., & Smith, J. A. (2005). Vapor transport in the unsaturated zone. In  Water encyclopedia. Wiley. doi: 10.1002/047147844X.gw1226.
  39. Tillman, F. D., & Weaver, J. W. (2005). Review of recent research on vapor intrusion.U S Environmental Protection Agency Office of Research and Development, Washington DC 20460, EPA/600/R-05/106, September 2005. (Vol. EPA/600/R-05/106).Google Scholar
  40. Tillman, J. F. D., & Weaver, J. W. (2006). Uncertainty from synergistic effects of multiple parameters in the Johnson and Ettinger (1991) vapor intrusion model. Atmospheric Environment, 40(22), 4098–4112.CrossRefGoogle Scholar
  41. Tillman, J. F. D., & Weaver, J. W. (2007). Parameter sets for upper and lower bounds on soil-to-indoor-air contaminant attenuation predicted by the Johnson and Ettinger vapor intrusion model. Atmospheric Environment, 41(27), 5797–5806.CrossRefGoogle Scholar
  42. U.S. EPA. (2002). Draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils. Washington D.C.: USEPA Office of Solid Waste & Energy Response, US EPA530-D-02-004.Google Scholar
  43. U.S. EPA. (2015). Technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor source to indoor. OSWER Publication 9200.2-154Google Scholar
  44. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. doi: 10.2136/sssaj1980.03615995004400050002x.CrossRefGoogle Scholar
  45. Van Wijk, W. R., & De Vries, V. A. (1963). Periodic temperature variations in a homogeneous soil. In W. R. Van Wijk (Ed.), Physics of plant environment (Chap. 4, pp. 103–143). Amsterdam: North-Holland Publishing Co.Google Scholar
  46. Verginelli, I., & Baciocchi, R. (2011). Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation. Journal of Contaminant Hydrology, 126(3), 167–180. doi: 10.1016/j.jconhyd.2011.08.010.CrossRefGoogle Scholar
  47. Verginelli, I., Yao, Y., & Suuberg, E. M. (2016). An excel®-based visualization tool of two-dimensional soil gas concentration profiles in petroleum vapor intrusion. Groundwater Monitoring & Remediation, 36(2), 94–100. doi: 10.1111/gwmr.12162.CrossRefGoogle Scholar
  48. Yao, Y., & Suuberg, E. M. (2013). A review of vapor intrusion models. Environmental Science and Technology, 47(6), 2457–2470. doi: 10.1021/es302714g.CrossRefGoogle Scholar
  49. Yao, Y., Wu, Y., Wang, Y., Verginelli, I., Zeng, T., Suuberg, E. M., et al. (2015). A petroleum vapor intrusion model involving upward advective soil gas flow due to methane generation. Environmental Science and Technology, 49(19), 11577–11585. doi: 10.1021/acs.est.5b01314.CrossRefGoogle Scholar
  50. Yao, Y., Verginelli, I., & Suuberg, E. M. (2016). A two-dimensional analytical model of petroleum vapor intrusion. Water Resources Research, 52(2), 1528–1539. doi: 10.1002/2015WR018320.CrossRefGoogle Scholar
  51. Yao, Y., Verginelli, I., & Suuberg, E. M. (2017). A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity. Water Resources Research, 53(5), 4499–4513.CrossRefGoogle Scholar
  52. Yu, S., Unger, A. J. A., & Parker, B. (2009). Simulating the fate and transport of TCE from groundwater to indoor air. Journal of Contaminant Hydrology, 107(3–4), 140–161.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Dawit N. Bekele
    • 1
    • 2
  • Ravi Naidu
    • 1
    • 2
  • Sreenivasulu Chadalavada
    • 2
  1. 1.Global Centre for Environmental Remediation, ATC BuildingUniversity of NewcastleCallaghanAustralia
  2. 2.CRC for Contamination Assessment and Remediation of the Environment, ATC BuildingUniversity of NewcastleCallaghanAustralia

Personalised recommendations