Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline

  • Haren B. Gosai
  • Bhumi K. Sachaniya
  • Dushyant R. Dudhagara
  • Rahul K. Rajpara
  • Bharti P. Dave
Original Paper

Abstract

A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites—Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g−1 dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10−6–2.11 × 10−5 and 9.08 × 10−6–4.50 × 10−3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.

Keywords

Polycyclic aromatic hydrocarbons (PAHs) Biological risk assessment Input prediction Bacterial abundance 

Supplementary material

10653_2017_11_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. Akpor, O. B., Lgbinosa, E. O., & Lgbinosa, O. O. (2007). Studies on the effect of petroleum hydrocarbon on the microbial and physico-chemicals characteristics of soil. African Journal of Biotechnology, 6, 1939–1943.CrossRefGoogle Scholar
  2. Amund, O. O., & Igiri, O. C. (1990). Biodegradation of petroleum hydrocarbons under tropical estuarine conditions. World Journal of Microbiology & Biotechnology, 6, 255–262.CrossRefGoogle Scholar
  3. Barakat, A. O., Mostafa, A., Wade, T. L., Sweet, S. T., & El Sayed, N. B. (2011). Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Marine Pollution Bulletin, 62, 1969–1978.CrossRefGoogle Scholar
  4. Barakat, A. O., Qian, Y., Kim, M., & Kennicutt, M. C. (2001). Chemical characterization of naturally weathered oil residue in arid terrestrial environmental in Al-Alamein, Egypt. Environmental Science and Technology, 27, 291–310.Google Scholar
  5. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environmental Toxicology and Chemistry, 17, 765–776.CrossRefGoogle Scholar
  6. Bouloubassi, I., Fillaux, J., & Saliot, A. (2001). Hydrocarbons in surface sediments from there Changjiang (Yangtze River) Estuary, East China Sea. Marine Pollution Bulletin, 42, 1335–1346.CrossRefGoogle Scholar
  7. Brandli, R. C., Bucheli, T. D., Kupper, T., Mayer, J., Stadelmann, F. X., & Tarradellas, J. (2007). Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. Environmental Pollution, 148, 520–528.CrossRefGoogle Scholar
  8. Budzinski, H., Jones, I., Bellocq, J., Piérrad, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.CrossRefGoogle Scholar
  9. Callén, M. S., López, J. M., & Mastral, A. M. (2013). Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models. Environmental Science and Pollution Research, 20, 3240–3251.CrossRefGoogle Scholar
  10. Chen, C. W., & Chen, C. F. (2011). Distribution, origin and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63, 417–423.CrossRefGoogle Scholar
  11. Dudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B. K., & Dave, B. P. (2016). Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environmental Pollution, 213, 338–346.CrossRefGoogle Scholar
  12. Edokpayi, J. N., Odiyo, J. O., Popoola, O. E. & Msagati, T. A. (2016). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. International Journal of Environmental Research and Public Health, 13(4), 387.Google Scholar
  13. Esedafe, W. K., Fagade, O. E., Umaru, F. F., & Akinwotu, O. (2015). Bacterial degradation of the polycyclic aromatic hydrocarbon (PAH)-fraction of refinery effluent. International Journal of Environmental Bioremediation & Biodegradation, 3, 23–27.Google Scholar
  14. Jiang, Y. F., Wang, X. T., Wu, M. H., Sheng, G. Y., & Fu, J. M. (2011). Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China. Environmental Monitoring and Assessment, 183, 139–150.CrossRefGoogle Scholar
  15. Jose, A. S., & Pasicolan, S. A. (2013). Carrying capacity of net primary productivity of Laguna Lake, Philippines. Global Advanced Research Journal of Agricultural Science, 2, 289–298.Google Scholar
  16. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatichydrocarbons: A review of the microbial degradation of benzo(a)pyrene. International Biodeterioration & Biodegradation, 45, 57–88.CrossRefGoogle Scholar
  17. Kafilzadeh, F. (2015). Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad River, Iran. The Egyptian Journal of Aquatic Research, 41, 227–231.CrossRefGoogle Scholar
  18. Kipopoulou, A. M., Manoli, E., & Samara, C. (1999). Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution, 106, 369–380.CrossRefGoogle Scholar
  19. Kujawinski, E. B., Soule, M. C. K., Valentine, D. L., Boysen, A. K., Longnecker, K., & Redmond, M. C. (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science and Technology, 45, 1298–1306.CrossRefGoogle Scholar
  20. Lewis, M. A., & Devereux, R. (2009). Non-nutrient anthropogenic chemicals in seagrass ecosystems: Fate and effects. Environmental Toxicology and Chemistry, 28, 644–661.CrossRefGoogle Scholar
  21. Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63, 1610–1619.CrossRefGoogle Scholar
  22. Lipiatou, E., Tolosa, I., Simo, R., Bouloubassi, I., Dachs, J., Marti, S., et al. (1997). Mass budget and dynamics of PAH in the western Mediterranean Sea. Deep-Sea Research, 44, 881–905.CrossRefGoogle Scholar
  23. Martínez-Lladó, X., Gibert, O., Martí, V., Díez, S., Romo, J., & Bayona, J. M. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbor sediments and their impact on benthic communities. Environmental Pollution, 149, 104–113.CrossRefGoogle Scholar
  24. Mermillod-Blondin, F., Foulquier, A., Gilbert, F., Navel, S., Montuelle, B., Bellvert, F., et al. (2013). Benzo(a)pyrene inhibits the role of the bioturbator Tubifex tubifex in river sediment biogeochemistry. Science of the Total Environment, 450–451, 230–241.CrossRefGoogle Scholar
  25. Mohajeri, L., Aziz, H. A., Isa, M. H., Zahed, M. A., & Mohajeri, S. (2010). Ex-situ Bioremediation of Crude Oil in Soil, a Comparative Kinetic Analysis. Bulletin of Environmental Contamination and Toxicology, 85, 54–58.CrossRefGoogle Scholar
  26. Oros, D. R., & Ross, J. R. M. (2004). Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments. Marine Chemistry, 86, 169–184.CrossRefGoogle Scholar
  27. Palanisami, T., Mallavarapu, M., & Naidu, R. (2012). Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils. Environmental Monitoring and Assessment, 184, 3875–3885.CrossRefGoogle Scholar
  28. Parastar, H., Radovic, J. R., Heravi, M. J., Diez, S., Bayona, J. M., & Tauler, R. (2011). Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil samples by means of GC × GC-ToFMS combined to multivariate curve resolution. Analytical Chemistry, 83, 9289–9297.CrossRefGoogle Scholar
  29. Peng, C., Chen, W. P., Liao, X. L., Wang, M. E., & Ouyang, Z. Y. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159, 802–808.CrossRefGoogle Scholar
  30. Pietzsch, R., Patchineelam, S. R., & Torres, J. P. M. (2010). Polycyclic aromatic hydrocarbons in recent sediments from a subtropical estuary in Brazil. Marine Chemistry, 118, 56–66.CrossRefGoogle Scholar
  31. Rahmanpoor, S., Ghafourian, H., Hashtroudi, S. M., & Bastami, K. D. (2014). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait, Persian Gulf. Marine Pollution Bulletin, 78, 224–229.CrossRefGoogle Scholar
  32. Rajpara, R. K., Dudhagara, D. R., Bhatt, J. K., Gosai, H. B. & Dave, B. P. (2017). Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: Occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Marine Pollution Bulletin, 119(2), 231–238.Google Scholar
  33. Saeedi, M., Loretta, Y. L., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.CrossRefGoogle Scholar
  34. Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.CrossRefGoogle Scholar
  35. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.CrossRefGoogle Scholar
  36. Wakeham, S. G. (1996). Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments. Marine Chemistry, 53, 187–205.CrossRefGoogle Scholar
  37. Wang, Z., Chen, J. W., Qiao, X. L., Yang, P., & Tian, F. L. (2007). Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: A case study in Dalian, China. Chemosphere, 68, 965–971.CrossRefGoogle Scholar
  38. Wang, H. S., Liang, P., Kang, Y., Shao, D. D., Zheng, G. J., Wu, S. C., et al. (2010). Enrichment of polycyclic aromatic hydrocarbons (PAHs) in mariculture sediments of Hong Kong. Environmental Pollution, 158, 3298–3308.CrossRefGoogle Scholar
  39. Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183, 395–401.CrossRefGoogle Scholar
  40. Yang, Y., Woodward, L. A., Li, Q. X., & Wang, J. (2014). Concentrations, source and risk assessment of polycyclic aromatic hydrocarbons in soils from midway atoll, North Pacific Ocean. PLoS One, 9, 1–7.Google Scholar
  41. Yunker, M. B., & Macdonald, R. W. (2003). Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry, 34, 1429–1454.CrossRefGoogle Scholar
  42. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAHs ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.CrossRefGoogle Scholar
  43. Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., & Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533–1543.CrossRefGoogle Scholar
  44. Zuo, Q., Duan, H. Y., Yang, Y., Wang, J. X., & Tao, S. (2007). Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environmental Pollution, 147, 303–310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Haren B. Gosai
    • 1
  • Bhumi K. Sachaniya
    • 1
  • Dushyant R. Dudhagara
    • 1
  • Rahul K. Rajpara
    • 1
  • Bharti P. Dave
    • 1
  1. 1.Department of Life SciencesMaharaja Krishnakumarsinhji Bhavnagar UniversityBhavnagarIndia

Personalised recommendations