Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1739–1765 | Cite as

Healing and edible clays: a review of basic concepts, benefits and risks

  • Celso de Sousa Figueiredo Gomes
Original Paper

Abstract

The use of clay by humans for medicinal and wellness purposes is most probably as old as mankind. Within minerals, due to its ubiquitous occurrence in nature and easy availability, clay was the first to be used and is still used worldwide. Healing clays have been traditionally used by man for therapeutic, nutritional and skin care purposes, but they could impart some important health and skin care risks. For instance, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Edible clays, a particular case of healing clays, have been traditionally used by man for nutritional and therapeutic purposes. Geophagy, the deliberate soil eating, earth eating, clay eating and pica (medical condition or eating disorder shown by individuals addicted to eat earth substances), has been observed in all parts of the world since antiquity, reflecting cultural practice, religious belief and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. This paper pretends to review historical data, basic concepts and functions, as well as benefits and risks of the use of healing clays, in general, for therapeutic and cosmetic purposes, and of edible clays, in particular, for therapeutic purposes.

Keywords

Healing clay Edible clay Mud therapy Peloid therapy Health benefits and risks 

References

  1. Abrahams, P. W. (2005). Geophagy and the involuntary ingestion of soils. In O. Selinu, B. Alloway, A. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, et al. (Eds.), Essentials of medical geology (pp. 435–458). Amsterdam: Elsevier.Google Scholar
  2. Abrahams, P. W. (2010). ‘‘Earth eaters’’: Ancient and modern perspectives on human geophagy. In E. R. Landa & C. Feller (Eds.), Soil and culture (pp. 369–398). Dordrecht: Springer (Chapter 23).Google Scholar
  3. Abrahams, P. W., Follansbee, M. H., Hunt, A., Smith, B., & Wragg, J. (2006). Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Applied Geochemistry, 21, 98–108.Google Scholar
  4. Abrahams, P. W., & Parsons, J. A. (1996). Geophagy in the tropics: A literature review. Geographical Journal, 162, 63–72.Google Scholar
  5. Al-Rmaldi, S. W., Jenkins, R. O., Watts, M. J., & Haris, P. I. (2010). Risk of human exposure to arsenic and other toxic elements from geophagy: Trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environmental Health, 9, 79. http://www.ehjournal.net/content/9/1/79.
  6. Araújo, A. R. T. S., Paiva, T., Ribeiro, M. P., & Coutinho, P. (2015). Innovation in thermalism: An example in Beira Interior Region of Portugal, chapter 11. In M. Peris-Ortiz & J. Álvarez-Garcia (Eds.), Health and wellness tourism: Emergence of a new market segment (pp. 165–180). Berlin: Springer.Google Scholar
  7. Armijo, F. (1991). Propriedades térmicas de los peloides. Boletin de la Sociedad Española de Hidrologia Médica, 6(3), 151–158.Google Scholar
  8. Armijo, F., Maraver, F., Pozo, M., Carretero, M. I., Armigo, O., Fernandez-Torán, M. A., et al. (2016). Thermal behaviour of clays and clay-water mixtures for pelotherapy. Applied Clay Science, 126, 50–56.Google Scholar
  9. Arribas, M., Meijide, R., & Mourelle, M. L. (2010). Evolución de la psoriasis tratada con peloides y água mineromedicinal de La Toja. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (p. 75). Madrid: C.E.R.S-A.Google Scholar
  10. Arribas, M., Meijide, R., & Mourelle, M. L. (2012). Long term effects of psoriasis treatment with mineral water and peloids of la Toja. Balnea, Medical Hydrology and Balneology, Environment Aspects, 6, 289–290.Google Scholar
  11. Aufreiter, S., Hancock, R. G., Mahaney, W. C., Stamolic-Robb, A., & Sanmugadas, K. (1997). Geochemistry and mineralogy of soils eaten by humans. International Journal of Food Sciences and Nutrition, 48, 293–305.Google Scholar
  12. Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., et al. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.Google Scholar
  13. Bech, J. (1987). Les terres medicinals. Barcelona: Discurs per Reial Académia de Farmácia de Barcelona, Reial Académia de Farmácia de Barcelona-CIRIT (Generalitat de Catalunya).Google Scholar
  14. Bech, J. (1996). Aspectos históricos y técnicos de las arcillas de uso medicinal, IX Simp. Grupo Especializado de Cristalografia La Cristalografia y la Industria Farmacéutica, Reales Soc. Esp. Fisica y Quimica (Ed.), Granada (pp. 15–17).Google Scholar
  15. Beer, A. M., Fetaj, S., & Lange, U. (2013). Peloid therapy: An overview of the empirical status an d evidence of mud therapy. Zeitschrift fur Rheumatologie, 72, 581–589.Google Scholar
  16. Beer, A. M., Junginger, H. E., Lukanov, J., & Sagorchev, P. (2003). Evaluation of the permeation of peat substances through human skin in vitro. International Journal of Pharmaceutics, 253(1–2), 169–175.Google Scholar
  17. Beer, A. M., Lukanov, J., & Sagorchev, P. (2002). Isolation of biologically active fractions from the water-soluble components of fulvic and ulmic acids from peat. Phytomedicine, 9, 653–666.Google Scholar
  18. Bigard, M. A., & Gilbert, C. (1990). Étude en double aveugle de l’ effet du Beidelix sur la surproduction de gaz intestinaux induite par un repas riche en flatulents. Médicine et Chirugie Digestives, 19, 317–319.Google Scholar
  19. Bisi-Johnson, M. A., Obi, C. L., & Ekosse, G. E. (2010). Microbiological and health related perspectives of geofagia: An overview. African Journal of Biotechnology, 9(19), 5784–5791.Google Scholar
  20. Bisi-Johnson, M. A., Oyelade, H. A., Adediran, K. A., & Akinola, S. A. (2013). Microbial evaluation of geophagic and cosmetic clays from southern and western Nigeria: Potential natural nanomaterials. International Journal of Environmental Chemical, Ecological, Geological and Geophysical Engineering, 7(12), 832–835.Google Scholar
  21. Bolzinger, M. A., Briançon, S., Pelletier, J., & Chevalier, Y. (2012). Penetration of drugs through skin, a complex rate-controlling membrane. Current Opinion in Colloid & Interface Science, 17(3), 156–165.Google Scholar
  22. Bonglaisin, J. N., Mbofung, C. M. F., & Lantum, D. N. (2011). Intake of lead, cadmium and mercury in kaolin-eating: A quality control. Journal of Medical Sciences, 11(7), 267–273.Google Scholar
  23. Brand, C. E., de Jager, L., & Ekosse, G. E. (2010). Possible health effects associated with human geophagic practice: An overview. SA Medical Technology, 23(1), 11–13.Google Scholar
  24. British Pharmacopeia. (2008). In Her Majesty's Stationery Office (Ed.), (10,952 pp). London: Health Ministers.Google Scholar
  25. Burguera, E. F., Vela-Anero, A., & Magalhães, J. (2012). Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthritis Cartilage, 22, 1026–1035.Google Scholar
  26. Cara, S., Carcangiu, G., Padalino, G., Palomba, M., & Tamanini, M. (2000). The bentonites in pelotherapy: Thermal properties of clay pastes from Sardinia (Italy). Applied Clay Science, 16, 125–132.Google Scholar
  27. Carabelli, A., De Bernardi Valserra, G., De Bernardi Valserra, M., Tripodi, S., Belloti, E., Pozzi, R., et al. (1998). Effect of thermal mud baths on normal, dry and seborrheic skin. Clinica Terapeutica, 149(4), 271–275.Google Scholar
  28. Cardoso-Gomes, J., & Gomes, C. S. F. (2015). Mud used for therapeutic and skin care purposes at the beach of Porto de Mós, Algarve, Portugal. Balnea, 10, 355–356.Google Scholar
  29. Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health: A review. Applied Clay Science, 21, 155–163.Google Scholar
  30. Carretero, M. I. (2008). Efecto de la maduración sobre las arcillas empleadas en peloterapia. In J. L. Legido & M. L. Mourelle (Eds.), Investigaciones en el ámbito Iberoamericano sobre Peloides Termales (pp. 95–108). Vigo: Universidad Vigo.Google Scholar
  31. Carretero, M. I., Gomes, C. S. F., & Tateo, F. (2006). Clays and human health. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Handbook of clay science. Developments in clay science (Vol. 1, pp. 717–741).Google Scholar
  32. Carretero, M. I., Gomes, C., & Tateo, F. (2013). Clays, drugs and human health. In F. Bergaya & G. Lagaly (Eds.), Handbook of clay science (pp. 711–764). Amsterdam: Elsevier.Google Scholar
  33. Carretero, M. I., & Pozo, M. (2007). Mineralogia Aplicada: Salud y Medio Ambiente (p. 464). Madrid: Thomson.Google Scholar
  34. Carretero, M. I., Pozo, M., Martin-Rubi, J. A., Pozo, E., & Maraver, F. (2010). Mobility of elements in interaction between artificial sweat and peloids used in Spanish spa. Applied Clay Science, 48(3), 506–515.Google Scholar
  35. Carretero, M. I., Pozo, M., Sánchez, C., Garcia, F. J., Medina, J. A., & Bernabé, J. M. (2007). Comparison of saponite and montmorillonite behaviour during static and stirring maturation with sea water for pelotherapy. Applied Clay Science, 36(1–3), 161–173.Google Scholar
  36. Casás, L. M., Legido, J. L., Pozo, M., Mourelle, L., Plantier, F., & Bessieres, D. (2011). Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochimica Acta, 524, 68–73.Google Scholar
  37. Curri, S. B., Bombardelli, E., & Grossi, F. (1997). Observations on organic components of thermal mud: Morphohistochemical and biochemical studies on lipid components of mud of the Terme dei Papi (Laghetto del Bagnaccio, Viterbo), Chemical bases of the interpretation of biological and therapeutic actions of thermal mud. Clinica Terapeutica, 148, 637–654.Google Scholar
  38. Danford, D. E. (1982). Pica and nutrition. Annals Reviews of Nutrition, 2, 303–322.Google Scholar
  39. Davies, T. C. (2010). Medical geology in Africa. In O. Selinus, R. B. Finkelman, & J. Centeno (Eds.), Medical geology—A regional synthesis (1st ed., pp. 199–219). Amsterdam: Springer (Chapter 8).Google Scholar
  40. Davies, B., Bowman, C., Davies, T., & Selinus, O. (2004). Medical geology: Perspectives and prospects. Essentials of Medical Geology. Amsterdam: Elsevier.Google Scholar
  41. Davies, T. C., Lar, U. A., Solomon, A. O., & Abraham, P. W. (2008). Mineralogy and geochemistry of geophagic materials consumed in Jos-Plateau State of Nigeria. Paper presentation at international conference South Africa.Google Scholar
  42. De Vos, P. (2010). European material medica in historical texts: Longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 176, 10–17.Google Scholar
  43. Delgado, R., Fernández-González, M. V., Gámiz, E., Martín-García, J. M., & Delgado, G. (2010). Evolución de la ultramicofábrica de los peloides en el proceso de maduración. In F. Maraver & M. I. Carretero (Eds.), Libro de resúmenes del II Congreso Iberoamericano de Peloides (pp. 41–42). Madrid: CERSA.Google Scholar
  44. Ekosse, G. E., & Jumbam, D. N. (2010). Geophagic clays: Their mineralogy, chemistry and possible human health effects. African Journal of Biotechnology, 9(40), 6755–6767.Google Scholar
  45. Ekosse, G. E., & Ngole, V. M. (2012). Mineralogy, geochemistry and provenance of geophagic soils from Swaziland. Applied Clay Science, 57, 25–31.Google Scholar
  46. EMEA—European Medicines Agency. (2008). Guidelines on the specification limits for residual metal catalysts or metal reagents. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003586.pdf. Accessed Mar 2016.
  47. EU. (2011). The drinking water directive (DWD). Council Directive 98/83/EC.Google Scholar
  48. European Commission SCCS/1501/12. (2012). Notes of guidance for testing of cosmetic ingredients and their safety evaluation (8th revision). Scientific Committee on Consumer Safety (SCCS).Google Scholar
  49. European Community Directive 76/768/ECC. (1976). On the approximation of laws of the member states relating to cosmetic products.Google Scholar
  50. European Pharmacopeia (4th ed.). (2002). European pharmacopeia convention, Strasbourg.Google Scholar
  51. European Pharmacopeia (7th ed.). (2011). Directorate for the quality of medicines of the council of Europe, Strasbourg.Google Scholar
  52. Falkenback, A., Kovacs, J., Franke, A., et al. (2005). Radon therapy for the treatment of rheumatic diseases: A review and meta-analysis of controlled clinical trials. Rheumatology International, 25, 205–210.Google Scholar
  53. Favero, J. S., Parisotto-Peterle, J., Weiss-Angeli, V., Brandalise, R. N., Gomes, L. B., Bergmann, C. P., et al. (2016). Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Applied Clay Science. doi: 10.1016/j.clay.2016.02.022.CrossRefGoogle Scholar
  54. Fernández-González, M. V. (2010). Proceso de maduración de peloides con fase líquida de las principales aguas minerales y mineromedicinales de la provincia de Granada. Ph.D. thesis, Universidad Granada.Google Scholar
  55. Fernández-González, M. V., Martín-García, J. M., Delgado, G., Párraga, J., & Delgado, R. (2013). A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 80–81, 107–116.Google Scholar
  56. Fernández-Lao, C., Cantarero, I., Garcia, J. F., & Arroyo, M. (2012). Termoterapia. In M. Albornoz & J. Meroño (Eds.), Procedimientos generales de fisioterapia (pp. 53–65). Barcelona: Elsevier.Google Scholar
  57. Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.Google Scholar
  58. Fioravanti, A., Cantarini, L., Guidelli, G. M., & Galeazzi, M. (2011). Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatology International, 31(1), 1–8.Google Scholar
  59. Fioravanti, A., & Chelesschi, S. (2015). Mechanisms of action of balneotherapy in rheumatic diseases. Balnea, 10, 43–56.Google Scholar
  60. Fioravanti, A., Iacoponi, F., Bellisai, B., Cantarini, L., & Galeazzi, M. (2010). Short- and long-term effects of spa therapy in knee osteoarthritis. American Journal of Physical Medicine and Rehabilitation, 89(2), 125–132.Google Scholar
  61. Fioravanti, A., Lamboglia, A., & Pascarelli, N. A. (2013). Thermal water of Vetriolo, Trentino, inhibits the negative effect of interleukin 1β on nitric oxide production and apoptosis in human osteoarthritic chondrocytes. Journal of Biological Regulators and Homeostatic Agents, 27, 891–902.Google Scholar
  62. Fioravanti, A., Tenti, S., Giannitti, C., Fortunati, N. A., & Galeazzi, M. (2014). Short- and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. International Journal of Biometeorology, 58(1), 79–86.Google Scholar
  63. Francois, G., Micollier, A., & Rouvie, I. (2005). Les Boues Thermales (p. 29). Atelier Santé Environmental: ENSP (École Nationale de la Santé Publique), Rennes.Google Scholar
  64. Galzigna, L., Bettero, A., & Bellometti, S. (1999a). La maturation de la boue thermale et sa mesure. Première partie. La Presse Thermale et Climatique, 136(1), 23–26.Google Scholar
  65. Galzigna, L., Bettero, A., & Bellometti, S. (1999b). La maturation de la boue thermale et sa mesure. Deuxième partie. La Presse Thermale et Climatique, 136(1), 27–30.Google Scholar
  66. Galzigna, L., Ceschi-Berrini, C., Moschin, E., & Tolomio, C. (1998). Thermal mud-pack as anti-inflammatory treatment. Biomedicine & Pharmacotherapy, 52, 408–409.Google Scholar
  67. Galzigna, L., Lalli, A., Moretto, C., & Bettero, A. (1995). Maturation of thermal mud controlled conditions and identification of an anti-inflammatory fraction. Journal of Physical and Rehabilitation Medicine, 5, 196–199.Google Scholar
  68. Galzigna, L., Moretto, C., & Lalli, A. (1996). Physical and biochemical changes of thermal mud after maturation. Biomedicine & Pharmacotherapy, 50(6–7), 306–308.Google Scholar
  69. Gámiz, E., Fernández-González, M. V., Párraga, J., & Delgado, R. (2008). Maduración de peloides. Influencia sobre la fase mineral. In J. L. Legido & M. L. Mourelle (Eds.), Investigaciones en el ámbito Iberoamericano sobre Peloides Termales (pp. 191–203). Vigo: Universidad Vigo.Google Scholar
  70. Gámiz, E., Martín-García, J. M., Fernández-González, M. V., Delgado, G., & Delgado, R. (2009). Influence of water type and maduration time on the propieties of kaolinite-saponite peloids. Applied Clay Science, 46(1), 117–123.Google Scholar
  71. Garcia, P.T. (2014). Peloterapia en Cosmética y Medicina Estética. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 185–207). Madrid. ISBN: 978-84-616-8551-6Google Scholar
  72. Gerencsér, G. (2014). Experimental balneology: The biological effects of medicinal water and mud samples from the Carpathian Basin. Ph.D. thesis, University of Pécs, Faculty of Health Sciences, Hungary.Google Scholar
  73. Gomes, C. S. F. (2002). Argilas: Aplicações na Indústria. In O Liberal (Ed.), Câmara de Lobos, Região Autónoma. da Madeira, 338 pp.Google Scholar
  74. Gomes, C. S. F. (2013). Naturotherapies based on minerals. Geomaterials, 3, 1–14.Google Scholar
  75. Gomes, C. S. F. (2015). In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea, 10, 125–142.Google Scholar
  76. Gomes, C. S. F., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., et al. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science, 75–76, 28–38.Google Scholar
  77. Gomes, C. S. F., Hernandez, R., & Sequeira, M. C. (2009). Characterization of clays used for medicinal purposes in the Archipelago of Cape Verde. Geochimica Brasiliensis, 22(3), 315–331.Google Scholar
  78. Gomes, C. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36, 4–21.Google Scholar
  79. Gomes, C. S. F., & Silva, J. B. P. (2010). A geological approach to the typology and nomenclature of the essentially inorganic peloids. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides, Lanjarón (pp. 12–13). Madrid: C.E.R.S-A.Google Scholar
  80. Gomes, C. S. F., Silva, J. B. P., & Gomes, J. H. C. (2015). Natural peloids versus designed and engineered peloids. Boletín/Sociedad Española de Hidrología Médica, 30(1), 15–36.Google Scholar
  81. Grigsby, R. K., Thyer, B. A., Waller, R. J., & Johnston, G. A., Jr. (1999). Chalk eating in middle Georgia: A culture-bound syndrome of pica? South Medical Journal, 92, 190–192.Google Scholar
  82. Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., et al. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Étude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.Google Scholar
  83. Harari, M. (2012a). Climatotherapy of skin diseases at the Dead Sea: An update. Anales de Hidrología Médica, 5(1), 39–51.Google Scholar
  84. Harari, M. (2012b). Beauty is not only skin deep: The Dead Sea features and cosmetics. Anales de Hidrología Médica, 5(1), 75–88.Google Scholar
  85. Health Canada. (2009). Draft guidance on heavy metal impurities and cosmetics. http://www.hc-sc.gc.ca/cps-spc/legislation/consultation/cosmet/metal-metaux-consult-eng.php. Accessed Mar 2016.
  86. Heinrich, M., & Pieroni, A. (2011). Ethnopharmakologie der Albaner Süditaliens. Zeitschrft Fürphytotherapie, 22, 236–240.Google Scholar
  87. Hooda, P. S., Henry, C. J. K., Seyoum, T. A., Armstrong, L. D. M., & Fowler, M. B. (2002). The potential impact of geophagia on the bioavailability of iron, zinc and calcium in human nutrition. Environmental Geochemistry and Health, 24, 305–319.Google Scholar
  88. Hooda, P. S., Henry, C. J. K., Seyoum, T. A., Armstrong, L. D. M., & Fowler, M. B. (2004). The potential impact of soil ingestion on human mineral nutrition. Science of Total Environment, 333, 75–87.Google Scholar
  89. Horno, M. A. P. (2014). Historia de la Peloterapia. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 47–53). Madrid. ISBN: 978-84-616-8551-6.Google Scholar
  90. Hunter, J. M. (1973). Geophagy in Africa and United States: A culture-nutrition hypothesis. Geographical Review, 63, 170–195.Google Scholar
  91. Hunter, J. M., & De Kleime, R. (1984). Geophagy in central America. Geographical Review, 74, 157–169.Google Scholar
  92. ICH—International Conference on Harmonization Q3D. (2013). Guideline for elemental impurities. http://www.ich.org/products/guidelines/quality/quality-single/article/impurities-guideline-for-metal-impurities.html. Accessed 16 Apr 2016.
  93. Igeoma, K. H., Onyoche, O. E., Uju, O. V., & Chukwuene, I. F. (2014). Assessment of heavy metals in edible clays sold in Onitsha metropolis of Anambra State, Nigeria. British Journal of Applied Science & Technology, 4(14), 2114–2124.Google Scholar
  94. Izugbara, C. O. (2003). The cultural context of geophagy among pregnant and lactating Ngwa women of southeastern Nigeria. The African Anthropologist, 10(2), 180–199.Google Scholar
  95. Johns, T., & Duquette, M. (1991). Detoxification and mineral supplementation as functions of geophagy. American Journal of Clinical Nutrition, 53, 448–456.Google Scholar
  96. Jumbam, N. D. (2013). Geophagic materials: The possible effects of their chemical composition on human health. Transactions of the Royal Society of South Africa, 68, 177–182.Google Scholar
  97. Key, T. C., Jr., Horger, E. O., III, & Miller, J. M. (1982). Geophagia as a cause of maternal death. Obstetrics & Gynaecology, 60, 525–526.Google Scholar
  98. Khlaifat, A., Al-Khashman, O., & Qutob, H. (2010). Physical and chemical characterization of Dead Sea mud. Materials Characterization, 61, 564–568.Google Scholar
  99. Kikouama, O. J. R., & Baldé, L. (2010). From edible clay to clay-containing formulation for optimization of the oral delivery of some trace elements: A review. International Journal of Food Science and Nutrition, 61(8), 1–21.Google Scholar
  100. Kikouama, O. J. R., Konan, K. L., Katty, A., Bonnet, J. P., Baldé, L., & Yagoubi, N. (2009a). Physicochemical characterization of edible clays and release of trace elements. Applied Clay Science, 43(1), 135–141.Google Scholar
  101. Kikouama, O. J. R., Le Cornec, F., Bouttier, S., Launay, A., Baldé, L., & Yagoubi, N. (2009b). Evaluation of trace elements released by edible clays in physicochemically simulated physiological media. International Journal of Food Sciences and Nutrition, 60(2), 130–142.Google Scholar
  102. Kim, J. H., Lee, J., Lee, H. B., Shin, J. H., & Kim, E. K. (2010). Water-retentive and anti-inflammatory properties of organic and inorganic substances from Korean sea mud. Natural Products Communications, 5(3), 395–398.Google Scholar
  103. Kutalek, R., Wewalka, G., Gundacker, C., Auer, H., Wilson, J., Haliza, D., et al. (2010). Geophagy and potential health implications: Geohelminths, microbes and heavy metals. Transactions of the Royal Society of Tropical Medicine and Hygiene, 104(12), 787–795.Google Scholar
  104. Kwong, A. M., & Henry, J. (2003). Why is geophagy treated like dirt? Deviant behaviour, 24, 353–371. doi: 10.1080/713840222.l.CrossRefGoogle Scholar
  105. Lambert, V., Boukhari, R., Misslin-Tritsch, C., & Carles, G. (2013). La géophagie: Advances dans la comprehension de ses causes et consequences. La Revue de Médicine Interne, 34, 94–98.Google Scholar
  106. Lar, U. A., Agene, J. I., & Umar, A. I. (2014). Geophagic clay materials from Nigeria: A potential source of heavy metals and human health implications in mostly women and children who practice it. Environmental Geochemistry and Health. doi: 10.1007/s10653-014-9653-0.CrossRefGoogle Scholar
  107. Laufer, B. (1930). Geophagy. Field Museum of natural History, Publication 280. Ph.D. thesis Anthropology Series (Vol. 18, pp. 99–198).Google Scholar
  108. Lim, D. G., Jeong, W.-W., Kim, N. A., Lim, J. Y., Lee, S.-H., Shim, W. S., et al. (2014). Effect of the glyceryl monooleate-based lyotropic phases on skin permeation using in vitro diffusion and skin imaging. Asian Journal of Pharmaceutical Science, 9, 324–329.Google Scholar
  109. Lopez-Galindo, A., & Viseras, C. (2004). Pharmaceutical and cosmetic application of clays. In F. Wypych & K. G. Satyanarayana (Eds.), Clay surfaces: Fundamentals and applications (pp. 267–289). Amsterdam: Elsevier.Google Scholar
  110. Lopez-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.Google Scholar
  111. Mahaney, W. C., Milner, M. W., Mulyono, H. S., Hancock, R. G. V., Aufreiter, S., Reich, M., et al. (2000). Mineral and chemical analyses of soils eaten by humans in Indonesia. International Journal of Environmental Health Research, 10, 93–109.Google Scholar
  112. Maraver, F. (2006). Antecedentes históricos de la Peloterapia. Anales de Hidrlogia Médica, 1, 17–42.Google Scholar
  113. Maraver, F. (2013). Mechanisms of action of pelotherapy: State of the art. In J. Nunes, C. Gomes, & J. Silva (Eds.), Livro de Actas do III Congresso Iberoamericano de Peloides (pp. 9–18). São Miguel, Açores: Ponta Delgada.Google Scholar
  114. Maraver, F., Fernandez-Torán, M. A., Corvillo, I., Morer, C., Váquez, I., Aguillera, L., et al. (2015). Peloterapia: Una Revisión. Medicina Naturista, 9(1), 38–46.Google Scholar
  115. Mascolo, N., Summa, V., & Tateo, F. (1999). Characterization of toxic elements in clays for human healing. Applied Clay Science, 15, 481–500.Google Scholar
  116. Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2016). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449–454.Google Scholar
  117. Meijide, R., Burguera, E. F., & Vela-Anero, A. (2015). Peloterapia y Artrosis. Balnea, 10, 289–300.Google Scholar
  118. Meijide, R., Mourelle, M. L., Vela-Anero, A., López, E. M., Burguera, E. F., & Pérez, C. G. (2014). Aplicación a pacientes: Peloterapia en patologias dermatológicas. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la Investigación y Innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 169–183). Madrid. ISBN: 978-84-616-8551-6.Google Scholar
  119. Meijide, R., Salgado, T., Lianes, A., Legido, J. L., Mourelle, M. L., & Gómez, C. (2010). Evaluación de los câmbios en la piel trás la aplicación de peloides mediante métodos de bioengenharia cutânea. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (pp. 48–49). Madrid: C.E.R.S.-A.Google Scholar
  120. Mpuchane, S. F., Ekosse, G. E., Gashe, B. A., Morobe, I., & Coetzee, S. H. (2010). Microbiological characterization of southern African medicinal and cosmetic clays. International Journal of Environmental Health Research, 20(1), 27–41.Google Scholar
  121. Mwalongo, D., & Mohamed, N. K. (2013). Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania. Radiation Physics and Chemistry, 91, 15–18.Google Scholar
  122. Naik, A., Pechtold, L., Potts, R., & Guy, R. (1995). Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. Journal of Controlled Release, 37, 299–306.Google Scholar
  123. Nchito, M., Geissler, P. W., Mubila, L., Friis, H., & Olsen, A. (2004). Effects of iron and multimicronutrient supplementation on geophagy: A two-by-two factorial study among Zambian schoolchildren in Lusaka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 218–227.Google Scholar
  124. Ngole, V. M., Ekosse, G. E., Jager, L., & Songca, S. P. (2010). Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. African Journal of Biotechnology, 9(36), 5929–5930.Google Scholar
  125. Nissenbaum, A., Rullköetter, J., & Yechieli, Y. (2002). Are the curative properties of ‘black mud’ from the Dead Sea due to the presence of bitumen (asphalt) or other types of organic matter? Environmental Geochemistry and Health, 24(4), 327–335.Google Scholar
  126. Njiru, H., Elchalal, U., & Paltiel, O. (2011). Geophagy during pregnancy in Africa: A literature review. Obstetrical & Gynecological Survey, 2011(66), 452–459.Google Scholar
  127. Norma Cubana de Peloides. (1998). Oficina Nacional de Normalización (NC) Calle E No. 261 Vedado. Cuba: Ciudad de la Habana.Google Scholar
  128. Novelli, G. (1996). Applicazion medicali e Igieniche delle bentoniti. In F. Veniale (Ed.), Atti Conv. “Argille Curative”, Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella, Milano.Google Scholar
  129. Novelli, G. (1998). Applicazioni Cosmetiche e Medicaliu delle argille smectiche. Cosmetic News, 122, 350–357.Google Scholar
  130. Novelli, G. (2000). Bentonite: A clay over the centuries. Incontri Scentifici, V Corso di Formazione “Metodi di Analisi di Materiali Argillosi”. Gruppo Itaiano AIPEA (pp. 263–304).Google Scholar
  131. Nyanza, E. C., Joseph, M., Premji, S. S., Thomas, D. S., & Mannion, C. (2014). Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania. BMC Pregnancy Childbirth, 14, 144.Google Scholar
  132. Odabasi, E., Gul, H., Macit, E., Turan, M., & Yildiz, O. (2007). Lipophilic components of different therapeutic mud species. The Journal of Alternative and Complementary Medicine, 13(10), 1115–1118.Google Scholar
  133. Odabasi, E., Turan, M., Erdem, H., & Tekbas, F. (2008). Does mud pack treatment have any chemical effect? A randomized controlled clinical study. Journal of Alternative Complementary Medicine, 14(5), 559–565.Google Scholar
  134. Okunlola, O. A., & Owoyemi, K. A. (2011). Compositional characteristics of geophagy in soils of Nigeria. In 1st Conference on clay and clay minerals: An innovative perspective on the role of clays and clay minerals and geophagia on economic development (pp. 290–305). South Africa: Free State University Bloemfontein.Google Scholar
  135. Otto, C. C., & Haydel, S. E. (2013). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8(5), 1–9.Google Scholar
  136. Owumi, S. E., & Oyelere, A. K. (2015). Determination of metal ion contents of two antiemetic clays used in geophagy. Toxicology Reports, 2, 928–932.Google Scholar
  137. Ozumba, U. C., & Ozumba, N. (2002). Patterns of helminth infection in the human gut at the University of Nigeria Teaching Hospital, Enugu, Nigeria. Journal of Health Science, 48, 263–268.Google Scholar
  138. Pandey, A., Mittal, A., Chauhan, N., & Alam, S. (2014). Role of surfactants as penetration enhancer in transdermal drug delivery. Molecular Pharmaceutics & Organic Process Research, 2, 2.Google Scholar
  139. Pastor, J. M. (1998). Termoterapia superficial. In M. Martine, J. M. Pastor, & F. Sendra (Eds.), Manual de Medicina Física (pp. 91–104). Madrid: Harcourt Brace.Google Scholar
  140. Peiró, P. S., & Tejero, S. S. (2014). Utilización terapeutica de la arcilla. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 279–288). Madrid. ISBN: 978-84-616-8551-6.Google Scholar
  141. Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., et al. (2015). Testing dioscorides’ medicinal clays for their antibacterial properties: The case of Samian Earth. Journal of Archaeological Science, 57, 257–267.Google Scholar
  142. Porlezza, C. (1965). Considerazione sui fanghi terapeutici (peloidi). Thermae II, 2–3, 6–57.Google Scholar
  143. Pozo, M., Carretero, M. I., Pozo, E., Martin Rubi, J. A., & Maraver, F. (2010). Caracterización mineralógica y química de peloides españoles y argentinos; Evaluación de elementos traza potencialmente tóxicos. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (pp. 37–38). Granada: Balneario de Lanjaron.Google Scholar
  144. Prasad, A. S., Halsted, J. A., & Nadimi, M. (1961). Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. The American Journal of Medicine, 31, 532–546.Google Scholar
  145. Quintela, A., Terroso, D., Ferreira da Silva, E., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441–451.Google Scholar
  146. Rautureau, M., Liewig, N., Gomes, C. S. F., & Katouzian-Safadi, M. (2010). Argiles et Santé: Propriétés et Thérapies. Paris: Editions Médicales Internationales, Lavoisier. ISBN 978-2-7430-1202-1.Google Scholar
  147. Rebelo, M., Viseras, C., Lopez-Galindo, A., Rocha, F., & Ferreira da Silva, E. (2011). Characterization of Portuguese geological materials to be used in medical hydrology. Applied Clay Science, 51, 258–266.Google Scholar
  148. Reid, R. (1992). Cultural and medical perspectives on geophagia. Medical Anthropology, 13, 337–351.Google Scholar
  149. Reinbacher, R. (1999). Brief history of clay in medicine. Clay Minerals Society News, 11, 22–23.Google Scholar
  150. Reinbacher, R. (2003). Healing earths: The third leg of medicine. Bloomington: 1st Books Library.Google Scholar
  151. Robertson, R. H. S. (1986). Fuller’s earth: A history. Kent: Volturna Press.Google Scholar
  152. Robertson, R. H. S. (1996). Cadavers, choleras and clays. Bulletin Mineralogical Society, 113, 3–7.Google Scholar
  153. Roques, C. F. (2004). Mud therapy and health. In Proceedings of the 3rd symposium on thermal muds in Europe, Dax (pp. 75–77).Google Scholar
  154. Roques, C. F. (2015). Mud therapy: Data for clinical evidence. Balnea, 10, 57–62.Google Scholar
  155. Saathoff, E., Olsen, A., Kvalsvig, J. D., & Geissler, P. W. (2002). Geophagy and its association with geohelminth infections in rural school children from Northern KwaZulu Natal, South Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, 485–490.Google Scholar
  156. Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., López-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: Identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810–814.Google Scholar
  157. Sarsan, A., Akkaya, N., Ozgen, M., Yildiz, N., Atalay, N. S., & Ardic, F. (2012). Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis. Journal of Back and Musculoskeletal Rehabilitation, 25(3), 193–199.Google Scholar
  158. Sheppard, S. C. (1998). Geoghagy: Who eats the soils and where do possible contaminants go? Environmental Geology, 33, 109–114.Google Scholar
  159. Skinner, H. C. W. (2007). Earth, source of health and hazards: An introduction to medical geology. Annual Review of Earth and Planetary Sciences, 35, 177–213.Google Scholar
  160. Suárez, M., González, P., Domínguez, R., Bravo, A., Melián, C., Pérez, M., et al. (2011). Identification of organic compounds in San Diego de los Baños Peloid (Pinar del Río, Cuba). Journal of Alternative and Complementary Medicine, 17(2), 155–165.Google Scholar
  161. Tanojo, H., Boelsma, E., Junginger, H., Ponec, M., & Boddé, H. (1999). In vivo human skin permeability enhancement by oleic acid: A laser Doppler velocimetry study. Journal of Controlled Release, 58, 97–104.Google Scholar
  162. Tateo, F., Ravaglioli, A., Andreoli, C., Bonina, F., Coiro, V., Degetto, S., et al. (2009). The in vitro percutaneous migration of chemical elements from a thermal mud for healing use. Applied Clay Science, 44, 83–94.Google Scholar
  163. Tateo, F., & Summa, V. (2007). Element mobility in clays for healing use. Applied Clay Science, 36(1), 64–76.Google Scholar
  164. Tateo, F., Summa, V., Bonelli, G. C., & Bentivenga, G. (2001). Mineralogy and geochemistry of herbalist’s clays for internal use: Simulation of the digestive process. Applied Clay Science, 20, 97–109.Google Scholar
  165. Tateo, F., Summa, V., Gianossi, M. L., & Ferraro, G. (2006). Healing clays: Mineralogical and geochemical constraints on the preparation of clay-water suspension (“argillic water”). Applied Clay Science, 33, 181–194.Google Scholar
  166. Tayie, F. (2004). Pica: Motivating factors and health issues. African Journal of Food, Agriculture, Nutrition and Development, 4(1). http://www.bioline.org.br/request?nd04010.
  167. Tefner, I. K. (2014). Effect of balneotherapy on musculoskeletal disorders with chronic pain. Ph.D. thesis, University of Szeged, Hungary.Google Scholar
  168. Teixeira, F., Maraver, F., Crespo, P. V., & Campos, A. (1996). Estudo microanalítico da materia orgánica de águas sulfúreas portuguesas e espanholas. Publicação do Instituto de Climatologia e Hidrologia da Universidade de Coimbra, 34, 1–5.Google Scholar
  169. Tolomio, C., Appolonia, F., Moro, I., & Ceschi-Berrini, C. (2004). Thermophilic microalgae growth on diferente substrates and at different temperatures in experimental tanks in Abano Therme (Italy). Algological Studies, 111, 145–157.Google Scholar
  170. Tolomio, C., Ceschi-Berrini, C., Appolonia, F., Galzigna, L., Masiero, L., Moro, I., et al. (2002). Diatoms in the termal mudo f Abano Therme, Italy (Maturation period). Algological Studies, 105, 11–27.Google Scholar
  171. Tolomio, C., Ceschi-Berrini, C., Moschin, E., & Galzigna, L. (1999). Colonization by diatoms and antirheumatic activity of thermal mud. Cell Biochemistry and Function, 17(1), 29–33.Google Scholar
  172. Torrella, F. (2006). La sulfuraria de Baños de Montemayor (Cáceres): Características morfológicas y funcionales de la comunidad microbiana constituyente. Anales de Hidrologia Medica, 1, 61–78.Google Scholar
  173. Tricás, J. M., Fortún, M., Jiménez, S., & Estébanes, E. (2014). Fisioterapia: fundamentación fisioterápica de la utilización de peloides. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 251–260). Madrid. ISBN: 978-84-616-8551-6.Google Scholar
  174. Trivedi, T. H., Daga, G. L., & Yeolekar, M. E. (2005). Geophagia leading to hypokalemic quadriparesis in a postpartum patient. The Journal of the Association of Physicians of India, 53, 205–207.Google Scholar
  175. Tserenpil, Sh, Dolman, G., & Voronkov, M. G. (2010). Organic matters in healing muds from Mongolia. Applied Clay Science, 49(1–2), 55–63.Google Scholar
  176. United States Pharmacopoeia 29-NF 24. (2006). US Pharmacopeial Convention, Rockville, MD.Google Scholar
  177. United States Pharmacopoeia 36NF31. (2013). United States Pharmacopoeia 36 and National Formulary 31. US Pharmacopoeial Convention Rockville, MD.Google Scholar
  178. Veniale, F. (1996). Argille Curative: Antefatti, Fatti e Misfatti. In Atti Convegno “Argille curative”. Salice Terme (PV, Italy) (pp. 26–28) Oct 1–11.Google Scholar
  179. Veniale, F. (1997). Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). In N. Morandi & M. Dondi (Eds.), Argille e Mineralli delle Argille. guida alla definizione di caratteristiche e proprietà per gli usi industriali, Corso di Specializzazione (pp. 205–239). Rimini: Gruppo Italiano AIPEA.Google Scholar
  180. Veniale, F. (1998). Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). Corso di Specializzazione, Gruppo Italiano AIPEA (pp. 1–40).Google Scholar
  181. Veniale, F. (1999). Simposio ‘‘Argille per fanghi peloidi termali e per trattamenti dermatologici e cosmetici”. Montecatini Terme, May 14–15, Pisa, Italy. Gruppo Italiano AIPEA. Google Scholar
  182. Veniale, F., Barberis, E., Carcangiu, G., Morandi, N., Setti, M., Tamanini, M., et al. (2004). Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Applied Clay Science, 25, 135–148.Google Scholar
  183. Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: Prespectives of innovation. Applied Clay Science, 36, 141–147.Google Scholar
  184. Vermeer, D. E., & Ferrell, R. E., Jr. (1985). Nigerian geophagical clay: A traditional anti-diarrheal pharmaceutical. Science, 227, 634–636.Google Scholar
  185. Vermeer, D. E., & Frate, D. A. (1979). Geophagia in rural Mississipi: Environmental and cultural contexts and nutritional implications. American Journal of Clinical Nutrition, 32(10), 2129–2135.Google Scholar
  186. Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 37–50.Google Scholar
  187. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug deliver. Applied Clay Science, 48, 291–295.Google Scholar
  188. Viseras, C., Cultrone, G., Cerezo, P., Aguzzi, C., Baschini, M., Valle, J., et al. (2006). Characterization of northern Patagonian Bentonites for pharmaceutical use. Applied Clay Science, 31, 272–281.Google Scholar
  189. Viseras, C., & López-Galindo, A. (1999). Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): Some pre-formulation studies. Applied Clay Science, 14, 69–82.Google Scholar
  190. WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva: WHO.Google Scholar
  191. Wiley, A. S., & Katz, S. H. (1998). Geophagy in pregnancy: A test of a hypothesis. Current Anthropology, 39, 532–545.Google Scholar
  192. Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52, 745–770.Google Scholar
  193. Williams, L. B., Haydel, S. E., & Ferrell, R. (2009). Bentonite, bandaids and borborygmi. Elements, 5, 99–104.Google Scholar
  194. Williams, L. B., Haydel, S. E., Giese, R., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.Google Scholar
  195. Williams, L. B., & Hillier, S. (2014). Kaolins and health: From first grade to first aid. Elements, 10, 207–211.Google Scholar
  196. Williams, L. B., Holland, M., Eberl, D. D., & Brunet de Courrsou, L. (2004). Killer Clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.Google Scholar
  197. Williams, L. B., Metge, D., Eberl, D. D., Harvey, R., Turner, A., Prapaipong, P., et al. (2011). What makes a natural clay antibacterial? Environmental Science and Technology, 45, 3768–3773.Google Scholar
  198. Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology, 29, 1525–1547.Google Scholar
  199. Woywodt, A., & Kiss, A. (2002). Geophagia: The history of earth-eating. Journal of the Royal Society of Medicine, 95, 143–146.Google Scholar
  200. Yamaoka, K., Mitsunobu, F., Hanamoto, K., et al. (2004). Study on biologic effects of radon and thermal therapy on osteoarthritis. The Journal of Pain, 5, 20–25.Google Scholar
  201. Young, S. L. (2010). Pica in pregnancy: New ideas about an old condition. Annual Review of Nutrition, 30, 403–422.Google Scholar
  202. Young, S. L. (2011). Craving earth (p. 228). New York: Columbia University Press.Google Scholar
  203. Ziegler, J. L. (1997). Geophagy: A vestige of paleonutrition. Tropical Medicine & International Health, 2, 609–611.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Research Unit “GeoBioTec” of FCT (Foundation for Science and Technology)University of AveiroAveiroPortugal

Personalised recommendations