A review of the public health impacts of unconventional natural gas development

  • P. J. Saunders
  • D. McCoy
  • R. Goldstein
  • A. T. Saunders
  • A. Munroe
Review Paper


The public health impact of hydraulic fracturing remains a high profile and controversial issue. While there has been a recent surge of published papers, it remains an under-researched area despite being possibly the most substantive change in energy production since the advent of the fossil fuel economy. We review the evidence of effects in five public health domains with a particular focus on the UK: exposure, health, socio-economic, climate change and seismicity. While the latter would seem not to be of significance for the UK, we conclude that serious gaps in our understanding of the other potential impacts persist together with some concerning signals in the literature and legitimate uncertainties derived from first principles. There is a fundamental requirement for high-quality epidemiological research incorporating real exposure measures, improved understanding of methane leakage throughout the process, and a rigorous analysis of the UK social and economic impacts. In the absence of such intelligence, we consider it prudent to incentivise further research and delay any proposed developments in the UK. Recognising the political realities of the planning and permitting process, we make a series of recommendations to protect public health in the event of hydraulic fracturing being approved in the UK.


Hydraulic fracturing Fracking Shale gas Public health 


  1. Abramzon, S., Samaras, C., Curtright, A., Litovitz, A., & Burger, N. (2014). Estimating the consumptive use costs of shale natural gas extraction on pennsylvania roadways. Journal of Infrastructure Systems, 20(3), 06014001-1–06014001-5.CrossRefGoogle Scholar
  2. Acquah-Andoh, E. (2015). Economic evaluation of bowland shale gas wells development in the UK. World Academy of Science, Engineering and Technology International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(7), 2577–2585.Google Scholar
  3. Adams, R., & Kelsey, L. (2012). Pennsylvania dairy farms and marcellus shale, 2007–2010. Penn State Cooperative Extension: Pennsylvania State University.Google Scholar
  4. Adgate, J. L., Goldstein, B. D., & McKenzie, L. M. (2014). Potential public health hazards, exposures and health effects from unconventional natural gas development. Environmental Science and Technology, 48(15), 8307–8320.CrossRefGoogle Scholar
  5. AEA Technology. (2012). Support to the identification of potential risks for the environment and human health arising from hydrocarbons operations involving hydraulic fracturing in Europe ED57281- Issue Number 17c.Google Scholar
  6. Aguilera, R., Aguilera, R. F., & Ripple, R. D. (2014). Link between endowments, economics and environment in conventional and unconventional gas reservoirs. Fuel, 126, 224–238.CrossRefGoogle Scholar
  7. Ahmadi, M., & John, K. (2015). Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas. Science of the Total Environment, 536, 457–467.CrossRefGoogle Scholar
  8. Alawattegama, S. K., Kondratyuk, T., Krynock, R., Bricker, M., Rutter, J. K., Bain, D. J., et al. (2015). Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction. Journal of Environmental Science and Health Part A, 50(5), 516–528.CrossRefGoogle Scholar
  9. Allen, D. T. (2014). Atmospheric emissions and air quality impacts from natural gas production and use. Annual Review of Chemical and Biomolecular Engineering, 5, 55–75.CrossRefGoogle Scholar
  10. Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., et al. (2013). Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Science, 110(44), 17768–17773.CrossRefGoogle Scholar
  11. Baisch, S. (2013). Seismic hazard associated with shale-gas-fracking? The bowland shale case study. 75th EAGE Conference and Exhibition Incorporating SPE EUROPEC. WS03 Frontiers of Shale Gas Extraction and Microseismic Monitoring.Google Scholar
  12. Bamberger, M., & Oswald, R. E. (2012). Impacts of gas drilling on human and animal health. New Solutions, 22(1), 51–77.CrossRefGoogle Scholar
  13. Bamberger, M., & Oswald, R. E. (2015). Long-term impacts of unconventional drilling operations on human and animal health. Journal of Environmental Science and Health, Part A, 50(5), 447–459.CrossRefGoogle Scholar
  14. Barth, J. M. (2013). The economic impact of shale gas development on state and local economies: Benefits, costs, and uncertainties. New Solutions, 23(1), 85–101.CrossRefGoogle Scholar
  15. Beaver, W. (2014). Environmental concerns in the Marcellus Shale. Business and Society Review, 119(1), 125–146.CrossRefGoogle Scholar
  16. Bergmann, A., Weber, F.-A., Meiners, H. G., & Müller, F. (2014). Potential water-related environmental risks of hydraulic fracturing employed in exploration and exploitation of unconventional natural gas reservoirs in Germany. Environmental Sciences Europe, 26(1), 1.CrossRefGoogle Scholar
  17. Bernstein, P., Kinnaman, T. C., & Wu, M. (2013). Estimating willingness to pay for river amenities and safety measures associated with shale gas extraction. Eastern Economic Journal, 39(1), 28–44.CrossRefGoogle Scholar
  18. Bloomdahl, R., Abualfaraj, N., Olson, M., & Gurian, P. L. (2014). Assessing worker exposure to inhaled volatile organic compounds from Marcellus Shale flowback pits. Journal of Natural Gas Science and Engineering, 11(21), 348–356.CrossRefGoogle Scholar
  19. Brandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, F., Pétron, G., Jordaan, S. M., et al. (2014). methane leaks from North American Natural Gas Systems. Science, 343(6172), 733–735.CrossRefGoogle Scholar
  20. Brown, S. P. A., Krupnick, A., & Walls, M. A. (2009). Natural gas: a bridge to a low-carbon future? RFF Issue Brief 09–11. Washington, DC: Resources for the Future.Google Scholar
  21. Bunch, A. G., Perry, C. S., Abraham, L., Wikoff, D. S., Tachovsky, J. A., Hixon, J. G., et al. (2014). Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks. Science of the Total Environment, 468–469, 832–842.CrossRefGoogle Scholar
  22. Burnham, A., Han, J., Clark, C. E., Wang, M., Dunn, J. B., & Palou-Rivera, I. (2012). Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environmental Science and Technology, 46(2), 619–627.CrossRefGoogle Scholar
  23. Casey, J. A., Ogburn, E. L., Rasmussen, S. G., Irving, J. K., Pollak, J., Locke, P. A., et al. (2015). Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environmental Health Perspectives, 123(11), 1130–1137.Google Scholar
  24. Casey, J. A., Savitz, D. A., Rasmussen, S. G., Ogburn, E. L., Pollak, J., Mercer, D. G., et al. (2016). Unconventional natural gas development and birth outcomes in Pennsylvania, USA. Epidemiology, 27(2), 163–172.Google Scholar
  25. Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., et al. (2014). Toward a better understanding and quantification of methane emissions from shale gas development. Proceedings of the National Academy of Sciences, 111(17), 6237–6242.CrossRefGoogle Scholar
  26. Centers for Disease Control and Prevention. CDC/ATSDR Hydraulic Fracturing Statement. https://www.cdc.gov/media/releases/2012/s0503_hydraulic_fracturing.html. Accessed 10 Aug 2016.
  27. Chalupka, S. (2012). Occupational silica exposure in hydraulic fracturing. Workplace Health and Safety, 60(10), 460.CrossRefGoogle Scholar
  28. Colborn, T., Kwiatkowski, C., Schultz, K., & Bachran, M. (2011). Natural gas operations from a public health perspective. Human and Ecological Risk Assessment: An International Journal, 17(5), 1039–1056.CrossRefGoogle Scholar
  29. Colborn, T., Schultz, K., Herrick, L., & Kwiatkowski, C. (2014). An exploratory study of air quality near natural gas operations. Human and Ecological Risk Assessment: An International Journal, 20(1), 86–105.CrossRefGoogle Scholar
  30. Coram, A., Moss, J., & Blashki, G. (2014). Harms unknown: health uncertainties cast doubt on the role of unconventional gas in Australia’s energy future. The Medical Journal of Australia, 200(4), 210–213.CrossRefGoogle Scholar
  31. Dale, A. T., Khanna, V., Vidic, R. D., & Bilec, M. M. (2013). Process based life-cycle assessment of natural gas from the Marcellus Shale. Environmental Science and Technology, 47(10), 5459–5466.CrossRefGoogle Scholar
  32. Darrah, T. H., Vengosh, A., Jackson, R. B., Warner, N. R., & Poreda, R. J. (2014). Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 111(39), 14076–14081.CrossRefGoogle Scholar
  33. Davies, R. J. (2011). Methane contamination of drinking water caused by hydraulic fracturing remains unproven. Proceedings of the National Academy of Sciences, 108(43), E871.CrossRefGoogle Scholar
  34. Davies, R. J., Almond, S., Ward, R. S., Jackson, R. B., Adams, C., Worrall, F., et al. (2014). Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Marine and Petroleum Geology, 9(56), 239–254.CrossRefGoogle Scholar
  35. Davies, R., Foulger, G., Bindley, A., & Styles, P. (2013). Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Marine and Petroleum Geology, 8(45), 171–185.CrossRefGoogle Scholar
  36. Drollette, B. D., Hoelzer, K., Warner, N. R., Darrah, T. H., Karatum, O., O’Connor, M. P., et al. (2015). Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proceedings of the National Academy of Sciences, 112(43), 13184–13189.CrossRefGoogle Scholar
  37. Eapi, G. R., Sabnis, M. S., & Sattler, M. L. (2014). Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale. Journal of the Air and Waste Management Association, 64(8), 927–944.CrossRefGoogle Scholar
  38. Eaton, T. T. (2013). Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply. Science of the Total Environment, 461–462, 158–169.CrossRefGoogle Scholar
  39. Elliott, E., Ettinger, A., Leaderer, B., Bracken, M., & Deziel, N. (2016). A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. Journal of Exposure Science & Environmental Epidemiology,. doi:10.1038/jes.2015.81.Google Scholar
  40. Engelder, T., Cathles, L. M., & Bryndzia, L. T. (2014). The fate of residual treatment water in gas shale. Journal of Unconventional Oil and Gas Resources, 9(7), 33–48.CrossRefGoogle Scholar
  41. Esswein, E. J., Breitenstein, M., Snawder, J., Kiefer, M., & Sieber, W. K. (2013). Occupational exposures to respirable crystalline silica during hydraulic fracturing. Journal of Occupational and Environmental Hygiene, 10(7), 347–356.CrossRefGoogle Scholar
  42. Esswein, E. J., Snawder, J., King, B., Breitenstein, M., Alexander-Scott, M., & Kiefer, M. (2014). Evaluation of some potential chemical exposure risks during flowback operations in unconventional oil and gas extraction: preliminary results. Journal of Occupational and Environmental Hygiene, 11(10), D174–D184.CrossRefGoogle Scholar
  43. Ethridge, S., Bredfeldt, T., Sheedy, K., Shirley, S., Lopez, G., & Honeycutt, M. (2015). The Barnett Shale: From problem formulation to risk management. Journal of Unconventional Oil and Gas Resources, 9(11), 95–110.CrossRefGoogle Scholar
  44. Ferrar, K. J., Kriesky, J., Christen, C. L., Marshall, L. P., Malone, S. L., Sharma, R. K., et al. (2013a). Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region. International Journal of Occupational and Environmental Health, 19(2), 104–112.CrossRefGoogle Scholar
  45. Ferrar, K. J., Michanowicz, D. R., Christen, C. L., Mulcahy, N., Malone, S. L., & Sharma, R. K. (2013b). Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania”. Environmental Science and Technology, 47(7), 3472–3481.CrossRefGoogle Scholar
  46. Field, R. A., Soltis, J., McCarthy, M. C., Murphy, S., & Montague, D. C. (2015). Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter. Atmospheric Chemistry and Physics, 15(6), 3527–3542.CrossRefGoogle Scholar
  47. Finkel, M. L., & Hays, J. (2013). The implications of unconventional drilling for natural gas: A global public health concern. Public Health, 127(10), 889–893.CrossRefGoogle Scholar
  48. Finkel, M., Hays, J., & Law, A. (2015). Unconventional natural gas development and human health: Thoughts from the United States. The Medical Journal of Australia, 203(7), 294–296.CrossRefGoogle Scholar
  49. Finkel, M. L., Selegean, J., Hays, J., & Kondamudi, N. (2013). Marcellus Shale Drilling’s Impact on the Dairy Industry in Pennsylvania: A descriptive report. New Solutions: A Journal of Environmental and Occupational Health Policy, 23(1), 189–201.CrossRefGoogle Scholar
  50. Flewelling, S. A., & Sharma, M. (2014). Constraints on upward migration of hydraulic fracturing fluid and brine. Groundwater, 52(1), 9–19.CrossRefGoogle Scholar
  51. Flewelling, S. A., Tymchak, M. P., & Warpinski, N. (2013). Hydraulic fracture height limits and fault interactions in tight oil and gas formations. Geophysical Research Letters, 40(14), 3602–3606.CrossRefGoogle Scholar
  52. Fontenot, B. E., Hunt, L. R., Hildenbrand, Z. L., Carlton, D. D., Jr., Oka, H., Walton, J. L., et al. (2013). An evaluation of water quality in private drinking water wells near natural gas extraction sites in the barnett shale formation. Environmental Science and Technology, 47(17), 10032–10040.CrossRefGoogle Scholar
  53. Fryzek, J., Pastula, S., Jiang, X., & Garabrant, D. H. (2013). Childhood cancer incidence in Pennsylvania counties in relation to living in counties with hydraulic fracturing sites. Journal of Occupational and Environmental Medicine, 55(7), 796–801.CrossRefGoogle Scholar
  54. Gilman, J. B., Lerner, B. M., Kuster, W. C., & de Gouw, J. A. (2013). Source signature of volatile organic compounds from oil and natural gas operations in Northeastern Colorado. Environmental Science and Technology, 47(3), 1297–1305.CrossRefGoogle Scholar
  55. Goetz, J. D., Floerchinger, C., Fortner, E. C., Wormhoudt, J., Massoli, P., Knighton, W. B., et al. (2015). Atmospheric emission characterization of marcellus shale natural gas development sites. Environmental Science and Technology, 49(11), 7012–7020.CrossRefGoogle Scholar
  56. Goldstein, B., & Malone, S. (2013). Obfuscation does not provide comfort: response to the article by Fryzek et al. on hydraulic fracturing and childhood cancer. Journal of Occupational and Environmental Medicine, 55(11), 1376–1378.CrossRefGoogle Scholar
  57. Gross, S. A., Avens, H. J., Banducci, A. M., Sahmel, J., Panko, J. M., & Tvermoes, B. E. (2013). Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. Journal of the Air and Waste Management Association, 63(4), 424–432.CrossRefGoogle Scholar
  58. Haefele, M., & Morton, P. (2009). The influence of the pace and scale of energy development on communities: Lessons from the natural gas drilling boom in the rocky mountains. Western Economics Forum, 8(2), 1–42.Google Scholar
  59. Hays, J., & Shonkoff, S. B. C. (2016). Toward an understanding of the environmental and public health impacts of unconventional natural gas development: a categorical assessment of the peer-reviewed scientific literature, 2009–2015. PLoS ONE, 11(4), e0154164.CrossRefGoogle Scholar
  60. Heath, G. A., O’Donoughue, P., Arent, D. J., & Bazilian, M. (2014). Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proceedings of the National Academy of Sciences, 111(31), E3167–E3176.CrossRefGoogle Scholar
  61. Heilweil, V. M., Grieve, P. L., Hynek, S. A., Brantley, S. L., Solomon, D. K., & Risser, D. W. (2015). Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development. Environmental Science and Technology, 49(7), 4057–4065.CrossRefGoogle Scholar
  62. Hildenbrand, Z. L., Carlton, D. D., Fontenot, B. E., Meik, J. M., Walton, J. L., Taylor, J. T., et al. (2015). A comprehensive analysis of groundwater quality in the Barnett Shale region. Environmental Science and Technology, 49(13), 8254–8262.CrossRefGoogle Scholar
  63. Hladik, M. L., Focazio, M. J., & Engle, M. (2014). Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Science of the Total Environment, 466–467, 1085–1093.CrossRefGoogle Scholar
  64. Holland, A. A. (2013). Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bulletin of the Seismology Society of America, 103, 1784.CrossRefGoogle Scholar
  65. Howarth, R. W. (2014). A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Science and Engineering, 2(2), 47–60.CrossRefGoogle Scholar
  66. Howarth, R. W., Ingraffea, A., & Engelder, T. (2011). Natural gas: Should fracking stop? Nature, 477(7364), 271–275.CrossRefGoogle Scholar
  67. Hughes, J. D. (2013). Energy: A reality check on the shale revolution. Nature, 494(7437), 307–308.CrossRefGoogle Scholar
  68. Hultman, N., Rebois, D., Scholten, M., & Ramig, C. (2011). The greenhouse impact of unconventional gas for electricity generation. Environmental Research Letters, 6(4), 044008.CrossRefGoogle Scholar
  69. Ingraffea, A. R., Wells, M. T., Santoro, R. L., & Shonkoff, S. B. C. (2014). Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proceedings of the National Academy of Sciences, 111(30), 10955–10960.CrossRefGoogle Scholar
  70. Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., & Van Stempvoort, D. R. (2013a). Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Groundwater, 51(4), 488–510.CrossRefGoogle Scholar
  71. Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O’Sullivan, F., et al. (2014). The environmental costs and benefits of fracking. Annual Review of Environment and Resources, 39, 327–362.CrossRefGoogle Scholar
  72. Jackson, R. B., Vengosh, A., Darrah, T. H., Warner, N. R., Down, A., Poreda, R. J., et al. (2013b). Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proceedings of the National Academy of Sciences, 110(28), 11250–11255.CrossRefGoogle Scholar
  73. Jacoby, H. D., & O’Sullivan, F. M. (2012). The influence of shale gas on US Energy and Environmental Policy. Economics of Energy and Environmental Policy, 1(1), 37.CrossRefGoogle Scholar
  74. Jemielita, T., Gerton, G. L., Neidell, M., Chillrud, S., Yan, B., Stute, M., et al. (2015). Unconventional gas and oil drilling is associated with increased hospital utilization rates. PLoS ONE, 10(7), e0131093.CrossRefGoogle Scholar
  75. Jenner, S., & Lamadrid, A. J. (2013). Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy, 53, 442.CrossRefGoogle Scholar
  76. Jiang, M., Michael Griffin, W. M., Hendrickson, C., Jaramillo, P., VanBriesen, J., & Venkatesh, A. (2011). Life cycle greenhouse gas emissions of Marcellus shale gas. Environmental Research Letters, 6(3), 034014.CrossRefGoogle Scholar
  77. Jones, P., Comfort, D., & Hillier, D. (2014a). Fracking for shale gas in the UK: Property and investment issues. Journal of Property Investment and Finance, 32(5), 505–517.CrossRefGoogle Scholar
  78. Jones, P., Hillier, D., & Comfort, D. (2014b). Fracking in the UK: Planning and property issues. Property Management, 32(4), 352–361.CrossRefGoogle Scholar
  79. Kassotis, C. D., Tillitt, D. E., Davis, J. W., Hormann, A. M., & Nagel, S. C. (2014). Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region. Endocrinology, 155(3), 897–907.CrossRefGoogle Scholar
  80. Kemball-Cook, S., Bar-Ilan, A., Grant, J., Parker, L., Jung, J., Santamaria, W., et al. (2010). Ozone impacts of natural gas development in the Haynesville Shale. Environmental Science and Technology, 44(24), 9357–9363.CrossRefGoogle Scholar
  81. Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research, 118(7), 3518.Google Scholar
  82. Kinnaman, T. C. (2011). The economic impact of shale gas extraction: A review of existing studies. Ecological Economics, 70(7), 1243–1249.CrossRefGoogle Scholar
  83. Kohl, C. A. K., Capo, R. C., Stewart, B. W., Wall, A. J., Schroeder, K. T., Hammack, R. W., et al. (2014). Strontium isotopes test long-term zonal isolation of injected and marcellus formation water after hydraulic fracturing. Environmental Science and Technology, 48(16), 9867–9873.CrossRefGoogle Scholar
  84. Lampe, D. J., & Stolz, J. F. (2015). Current perspectives on unconventional shale gas extraction in the Appalachian Basin. Journal of Environmental Science and Health, Part A, 50(5), 434–446.CrossRefGoogle Scholar
  85. Lan, X., Talbot, R., Laine, P., & Torres, A. (2015). Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory. Environmental Science and Technology, 49(13), 8139–8146.CrossRefGoogle Scholar
  86. Laurenzi, I. J., & Jersey, G. R. (2013). Life cycle greenhouse gas emissions and freshwater consumption of marcellus shale gas. Environmental Science and Technology, 47(9), 4896–4903.CrossRefGoogle Scholar
  87. Lave, R., & Lutz, B. (2014). Hydraulic fracturing: A critical physical geography review. Geography Compass, 8(10), 739–754.CrossRefGoogle Scholar
  88. Lavoie, T. N., Shepson, P. B., Cambaliza, M. O. L., Stirm, B. H., Karion, A., Sweeney, C., et al. (2015). Aircraft-based measurements of point source methane emissions in the Barnett Shale basin. Environmental Science and Technology, 49(13), 7904–7913.CrossRefGoogle Scholar
  89. Levi, M. (2013). Climate consequences of natural gas as a bridge fuel. Climate Change, 118(3), 609–623.CrossRefGoogle Scholar
  90. Li, H., & Carlson, K. H. (2014). Distribution and origin of groundwater methane in the wattenberg oil and gas field of Northern Colorado. Environmental Science and Technology, 48(3), 1484–1491.CrossRefGoogle Scholar
  91. Lightowlers, P. (2015). Chemical pollution from fracking. London: CHEM Trust.Google Scholar
  92. Litovitz, A., Curtright, A., Abramzon, S., Burger, N., & Samaras, C. (2013). Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania. Environmental Research Letters, 8(1), 014017.CrossRefGoogle Scholar
  93. Llewellyn, G. T., Dorman, F., Westland, J. L., Yoxtheimer, D., Grieve, P., Sowers, T., et al. (2015). Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proceedings of the National Academy of Sciences, 112(20), 6325–6330.CrossRefGoogle Scholar
  94. Macey, G., Breech, R., Chernaik, M., Cox, C., Larson, D., Thomas, D., et al. (2014). Air concentrations of volatile compounds near oil and gas production: A community-based exploratory study. Environmental Health, 13(1), 82.CrossRefGoogle Scholar
  95. Marshall, M. (2011). How fracking caused earthquakes in the UK. New Scientist 2nd November.Google Scholar
  96. Maryland Institute for Applied Environmental Health School of Public Health. (2014). Potential public health impacts of natural gas development and production in the marcellus shale in Western Maryland. College Park: University of Maryland.Google Scholar
  97. Mash, R., Minnaar, J., & Mash, B. (2014). Health and fracking: Should the medical profession be concerned? South African Medical Journal, 104, 332–335.CrossRefGoogle Scholar
  98. McCoy, D., & Saunders, P. (2015). Health and fracking: The impacts and opportunity costs. London: Medact.Google Scholar
  99. McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B. P., et al. (2014). Limited impact on decadal-scale climate change from increased use of natural gas. Nature, 514(7523), 482–485.CrossRefGoogle Scholar
  100. McKenzie, L. M., Guo, R., Witter, R. Z., Savitz, D. A., Newman, L. S., & Adgate, J. L. (2014). Birth outcomes and maternal residential proximity to natural gas development in rural Colorado. Environmental Health Perspectives, 122(4), 412–417.Google Scholar
  101. McKenzie, L. M., Witter, R. Z., Newman, L. S., & Adgate, J. L. (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of the Total Environment, 1(424), 79–87.CrossRefGoogle Scholar
  102. McLeod, J. D., Brinkman, G. L., & Milford, J. B. (2014). Emissions Implications of future natural gas production and use in the U.S. and in the Rocky Mountain Region. Environmental Science and Technology, 48(22), 13036–13044.CrossRefGoogle Scholar
  103. Middleton, J., & Saunders, P. (2015). 20 years of local ecological public health: the experience of Sandwell in the English West Midlands. Public Health, 129, 1344–1352.CrossRefGoogle Scholar
  104. Mitka, M. (2012). Rigorous evidence slim for determining health risks from natural gas fracking. Journal of the American Medical Association, 307(20), 2135–2136.Google Scholar
  105. Molofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T., & Farhat, S. K. (2013). Evaluation of methane sources in groundwater in northeastern Pennsylvania. Ground Water, 2013(3), 333–349.CrossRefGoogle Scholar
  106. Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science and Technology, 48(15), 8349–8359.CrossRefGoogle Scholar
  107. Muehlenbachs, L., Spiller, E., & Timmins, C. (2015). The housing market impacts of shale gas development. American Economic Review, 105(12), 3633–3659.CrossRefGoogle Scholar
  108. Munasib, A., & Rickman, D. S. (2015). Regional economic impacts of the shale gas and tight oil boom: A synthetic control analysis. Regional Science and Urban Economics, 1(50), 1–17.CrossRefGoogle Scholar
  109. Myers, T. (2012). Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater, 50(6), 872–882.CrossRefGoogle Scholar
  110. Nelson, A. W., Knight, A. W., Eitrheim, E. S., & Schultz, M. K. (2015). Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. Journal of Environmental Radioactivity, 4(142), 24–28.CrossRefGoogle Scholar
  111. New York State Department of Environmental Conservation. (2011). Chapter 5: Natural gas development activities and high-volume hydraulic fracturing. Supplemental Generic Environmental Impact Statement 2011.Google Scholar
  112. New York State Department of Health. (2014). A Public health review of high volume hydraulic fracturing for shale gas development.Google Scholar
  113. Newell, R. G., & Raimi, D. (2014). Implications of shale gas development for climate change. Environmental Science and Technology, 48(15), 8360–8368.CrossRefGoogle Scholar
  114. O’Sullivan, F., & Paltsev, S. (2012). Shale gas production: Potential versus actual greenhouse gas emissions. Environmental Research Letters, 7(4), 044030.CrossRefGoogle Scholar
  115. Olmstead, S. M., Muehlenbachs, L. A., Shih, J., Chu, Z., & Krupnick, A. J. (2013). Shale gas development impacts on surface water quality in Pennsylvania. Proceedings of the National Academy of Sciences, 110(13), 4962–4967.CrossRefGoogle Scholar
  116. Omara, M., Sullivan, M. R., Li, X., Subramanian, R., Robinson, A. L., & Presto, A. A. (2016). Methane emissions from conventional and unconventional natural gas production sites in the Marcellus Shale Basin. Environmental Science and Technology, 250(4), 2099–2107.CrossRefGoogle Scholar
  117. Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences, 108(20), 8172–8176.CrossRefGoogle Scholar
  118. Paredes, D., Komarek, T., & Loveridge, S. (2015). Income and employment effects of shale gas extraction windfalls: Evidence from the Marcellus region. Energy Economics, 47, 112–120.CrossRefGoogle Scholar
  119. Parenteau, P., & Barnes, A. (2013). A bridge too far: Building off-ramps on the shale gas superhighway. Idaho Law Review, 49, 325–366.Google Scholar
  120. Paulik, L. B., Donald, C. E., Smith, B. W., Tidwell, L. G., Hobbie, K. A., Kincl, L., et al. (2015). Impact of natural gas extraction on PAH levels in ambient air. Environmental Science and Technology, 49(8), 5203–5210.CrossRefGoogle Scholar
  121. Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., et al. (2015). Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research: Atmospheres, 120(5), 2119–2213.Google Scholar
  122. Pelak, A. J., & Sharma, S. (2014). Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development. Environmental Pollution, 195, 91–100.CrossRefGoogle Scholar
  123. Penning, T. M., Breysse, P. N., Gray, K., Howarth, M., & Yan, B. (2014). Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environmental Health Perspectives, 122, 1155–1159.Google Scholar
  124. Perdue, R. T., & Pavela, G. (2012). Addictive economies and coal dependency: Methods of extraction and socioeconomic outcomes in West Virginia, 1997–2009. Organization and Environment, 25(4), 368–384.CrossRefGoogle Scholar
  125. Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., et al. (2014). A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. Journal of Geophysical Research: Atmospheres, 119(11), 6836–6852.Google Scholar
  126. Popkin, J. H., Duke, J. M., Borchers, A. M., & Ilvento, T. (2013). Social costs from proximity to hydraulic fracturing in New York state. Energy Policy, 62, 62–69.CrossRefGoogle Scholar
  127. Public Health England. (2014). Review of the potential public health impacts of exposures to chemical and radioactive pollutants as a result of the shale gas extraction process CRCE 009. Chilton: PHE.Google Scholar
  128. Rabinowitz, P. M., Slizovskiy, I. B., Lamers, V., Trufan, S. J., Holford, T. R., Dziura, J. D., et al. (2015). Proximity to natural gas wells and reported health status: Results of a household survey in Washington County, Pennsylvania. Environmental Health Perspectives, 123(1), 21–26.CrossRefGoogle Scholar
  129. Rahm, B. G., & Riha, S. J. (2014). Evolving shale gas management: Water resource risks, impacts, and lessons learned. Environmental Science Processes and Impacts, 16(6), 1400–1412.CrossRefGoogle Scholar
  130. Rahm, B. G., Vedachalam, S., Bertoia, L. R., Mehta, D., Vanka, V. S., & Riha, S. J. (2015). Shale gas operator violations in the Marcellus and what they tell us about water resource risks. Energy Policy, 7(82), 1–11.CrossRefGoogle Scholar
  131. Reilly, D., Singer, D., Jefferson, A., & Eckstein, Y. (2015). Identification of local groundwater pollution in northeastern Pennsylvania: Marcellus flowback or not? Environmental Earth Sciences, 73(12), 8097–8109.CrossRefGoogle Scholar
  132. Rich, A., Grover, J. P., & Sattler, M. L. (2014). An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale. Journal of the Air and Waste Management Association, 64(1), 61–72.CrossRefGoogle Scholar
  133. Rosenman, K. D. (2014). Hydraulic fracturing and the risk of silicosis. Clinical Pulmonary Medicine, 21(4), 167–172.CrossRefGoogle Scholar
  134. Roy, A. A., Adams, P. J., & Robinson, A. L. (2014). Air pollutant emissions from the development, production, and processing of Marcellus Shale natural gas. Journal of the Air and Waste Management Association, 64(1), 19–37.CrossRefGoogle Scholar
  135. Rozell, D. J., & Reaven, S. J. (2012). Water pollution risk associated with natural gas extraction from the Marcellus Shale. Risk Analysis: An International Journal, 32(8), 1382–1393.CrossRefGoogle Scholar
  136. Saberi, P., Propert, K. J., Powers, M., Emmett, E., & Green-McKenzie, J. (2014). Field survey of health perception and complaints of Pennsylvania residents in the Marcellus Shale region. International Journal of Environmental Research and Public Health, 11(6), 6517–6527.CrossRefGoogle Scholar
  137. Saunders, P. J., Stewart, A., & Karim, T. (2012). Establishing an environmental public health tracking system in the UK. In Andrius Kavaliunas (Ed.) Proceedings of the 12th World Congress on Environmental Health, Vilnius May 2227, 2012 (pp. 27–32). Bologna: Medimond International Proceedings Division.Google Scholar
  138. Schneising, O., Burrows, J. P., Dickerson, R. R., Buchwitz, M., Reuter, M., & Bovensmann, H. (2014). Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earth’s Future, 2(10), 548–558.CrossRefGoogle Scholar
  139. Schon, S. C. (2011). Hydraulic fracturing not responsible for methane migration. Proceedings of the National Academy of Sciences, 108(37), E664–E664.CrossRefGoogle Scholar
  140. Schrag, D. P. (2012). Is shale gas good for climate change? Daedalus, 141(2), 72–80.CrossRefGoogle Scholar
  141. Science and Environmental Health Network. (2016). Wingspread conference on the precautionary principle. http://www.sehn.org/wing.html. Accessed 10 Aug 2016.
  142. Seaton, A., MacNee, W., Donaldson, K., & Godden, D. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176–178.CrossRefGoogle Scholar
  143. Shahriar, A., Sadiq, R., & Tesfamariam, S. (2014). Life cycle greenhouse gas footprint of shale gas: A probabilistic approach. Stochastic Environmental Research and Risk Assessment, 28(8), 2185–2204.CrossRefGoogle Scholar
  144. Sharma, S., Bowman, L., Schroeder, K., & Hammack, R. (2015). Assessing changes in gas migration pathways at a hydraulic fracturing site: Example from Greene County, Pennsylvania, USA. Applied Geochemistry, 9(60), 51–58.CrossRefGoogle Scholar
  145. Shonkoff, S. B., Hays, J., & Finkel, M. L. (2014). Environmental public health dimensions of shale and tight gas development. Environmental Health Perspectives, 122(8), 787–795.Google Scholar
  146. Siegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., & Bothun, R. L. (2015). Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in Northeastern Pennsylvania. Environmental Science and Technology, 49(7), 4106–4112.CrossRefGoogle Scholar
  147. Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews, 37, 249–264.CrossRefGoogle Scholar
  148. Stacy, S. L., Brink, L. L., Larkin, J. C., Sadovsky, Y., Goldstein, B. D., Pitt, B. R., et al. (2015). Perinatal outcomes and unconventional natural gas operations in Southwest Pennsylvania. PLoS ONE, 10(6), e0126425.CrossRefGoogle Scholar
  149. Stamford, L., & Azapagic, A. (2014). Life cycle environmental impacts of UK shale gas. Applied Energy, 134, 506–518.CrossRefGoogle Scholar
  150. Steinzor, N., Subra, W., & Sumi, L. (2013). Investigating links between shale gas development and health impacts through a community survey project in Pennsylvania. New Solutions, 23(1), 55–83.CrossRefGoogle Scholar
  151. Stephenson, T., Valle, J. E., & Riera-Palou, X. (2011). Modeling the relative GHG emissions of conventional and shale gas production. Environmental Science and Technology, 45(24), 10757–10764.CrossRefGoogle Scholar
  152. Stevens, P. (2003). Resource impact: curse or blessing? A literature survey. Journal of Energy Literature, 9(1), 3–42.Google Scholar
  153. Stevens, P. (2013). Shale gas in the United Kingdom. London: Chatham House Royal Institute of International Affairs.Google Scholar
  154. Subramanian, R., Williams, L. L., Vaughn, T. L., Zimmerle, D., Roscioli, J. R., Herndon, S. C., et al. (2015). Methane emissions from natural gas compressor stations in the transmission and storage sector: Measurements and comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environmental Science and Technology, 49(5), 3252–3261.CrossRefGoogle Scholar
  155. Swarthout, R. F., Russo, R. S., Zhou, Y., Hart, A. H., & Sive, B. C. (2013). Volatile organic compound distributions during the NACHTT campaign at the Boulder Atmospheric Observatory: Influence of urban and natural gas sources. Journal of Geophysical Research: Atmospheres, 118(18), 10614–10637.Google Scholar
  156. Swarthout, R. F., Russo, R. S., Zhou, Y., Miller, B. M., Mitchell, B., Horsman, E., et al. (2015). Impact of Marcellus shale natural gas development in Southwest Pennsylvania on volatile organic compound emissions and regional air quality. Environmental Science and Technology, 49(5), 3175–3184.CrossRefGoogle Scholar
  157. Task Force on Shale Gas. (2015). Final conclusions and recommendations. London: Task Force on Shale Gas2.Google Scholar
  158. The Economist (2013) Deep sigh of relief. The shale gas and oil bonanza is transforming America’s energy outlook and boosting its economy. London: The Economist Newspaper Limited.Google Scholar
  159. The Royal Society and The Royal Academy of Engineering. (2012). Shale gas extraction in the UK: a review of hydraulic fracturing. London: The Royal Society and The Royal Academy of Engineering.Google Scholar
  160. The UK’s Faculty of Public Health. (2016). http://www.fph.org.uk/what_is_public_health. Accessed 9 Aug 2016.
  161. Thompson, C., Hueber, J., & Helmig, D. (2014). Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado. Elementa: Science of the Anthropocene, 2, 000035. doi:10.12952/journal.elementa.000035.Google Scholar
  162. Throupe, R., Simons, R. A., & Mao, X. (2013). A review of hydro “fracking” and its potential effects on real estate. Journal of Real Estate Literature, 21(2), 205–232.Google Scholar
  163. Tyner, D. R., & Johnson, M. R. (2014). Emission factors for hydraulically fractured gas wells derived using well- and battery-level reported data for Alberta, Canada. Environmental Science and Technology, 48(24), 14772–14781.CrossRefGoogle Scholar
  164. United Kingdom Onshore Operators Group. (2016). Community engagement charter oil and gas from unconventional reservoirs. http://www.ukoog.org.uk/images/ukoog/pdfs/communityengagementcharterversion6.pdf. Accessed 10 Aug 2016.
  165. van der Elst, N. J., Savage, H. M., Keranen, K. M., & Abers, G. A. (2013). Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science, 341, 164–167.CrossRefGoogle Scholar
  166. van der Voort, N., & Vanclay, F. (2015). Social impacts of earthquakes caused by gas extraction in the Province of Groningen, The Netherlands. Environmental Impact Assessment Review, 50, 1–15.CrossRefGoogle Scholar
  167. Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science and Technology, 48(15), 8334–8348.CrossRefGoogle Scholar
  168. Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009.CrossRefGoogle Scholar
  169. Vinciguerra, T., Yao, S., Dadzie, J., Chittams, A., Deskins, T., Ehrman, S., et al. (2015). Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations. Atmospheric Environment, 2015(110), 144–150.CrossRefGoogle Scholar
  170. Wang, R., Gu, Y. J., Schultz, R., Kim, A., & Atkinson, G. (2016). Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek. Alberta. Geophysical Research Letters, 43(2), 564–573.CrossRefGoogle Scholar
  171. Wang, J., Ryan, D., & Anthony, E. (2011). Reducing the greenhouse gas footprint of shale gas. Energy Policy, 39, 8196–8199.CrossRefGoogle Scholar
  172. Warner, N. R., Christie, C. A., Jackson, R. B., & Vengosh, A. (2013a). Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environmental Science and Technology, 47(20), 11849–11857.CrossRefGoogle Scholar
  173. Warner, N. R., Jackson, R. B., Darrah, T. H., Osborn, S. G., Down, A., Zhao, K., et al. (2012). Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences, 109(30), 11961–11966.CrossRefGoogle Scholar
  174. Warner, N. R., Kresse, T. M., Hays, P. D., Down, A., Karr, J. D., Jackson, R. B., et al. (2013b). Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Applied Geochemistry, 35, 207–220.CrossRefGoogle Scholar
  175. Wattenberg, E. V., Bielicki, J. M., Suchomel, A. E., Sweet, J. T., Vold, E. M., & Ramachandran, G. (2015). Assessment of the acute and chronic health hazards of hydraulic fracturing fluids. Journal of Occupational and Environmental Hygiene, 12(9), 611–624.CrossRefGoogle Scholar
  176. Webb, E., Bushkin-Bedient, S., Cheng, A., Kassotis, C., Balise, V., & Nagel, S. (2014). Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Reviews on Environmental Health, 29(4), 307–318.CrossRefGoogle Scholar
  177. Weber, J. (2012). The effects of a natural gas boom on employment and income in Colorado, Texas, and Wyoming. Energy Economics, 34(5), 1580–1588.CrossRefGoogle Scholar
  178. Weber, C. L., & Clavin, C. (2012). Life cycle carbon footprint of shale gas: Review of evidence and implications. Environmental Science and Technology, 46(11), 5688–5695.CrossRefGoogle Scholar
  179. Weber, B. A., Geigle, J., & Barkdull, C. (2014). Rural North Dakota’s oil boom and its impact on social services. Social Work, 59(1), 62–72.CrossRefGoogle Scholar
  180. Werner, A. K., Vink, S., Watt, K., & Jagals, P. (2015). Environmental health impacts of unconventional natural gas development: A review of the current strength of evidence. Science of the Total Environment, 505, 1127–1141.CrossRefGoogle Scholar
  181. Westaway, R., & Younger, P. L. (2014). Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK. Quarterly Journal of Engineering Geology and Hydrogeology, 47(4), 333–350.CrossRefGoogle Scholar
  182. Weyant, C. L., Shepson, P. B., Subramanian, R., Cambaliza, M. O. L., Heimburger, A., McCabe, D., et al. (2016). Black carbon emissions from associated natural gas flaring. Environmental Science and Technology, 50(4), 2075–2081.CrossRefGoogle Scholar
  183. Witter, R. Z., McKenzie, L., Stinson, K. E., Scott, K., Newman, L. S., & Adgate, J. (2013). The use of health impact assessment for a community undergoing natural gas development. American Journal of Public Health, 103(6), 1002–1010.CrossRefGoogle Scholar
  184. Wrenn, D., Kelsey, T., & Jaenicke, E. (2015). Resident vs. nonresident employment associated with Marcellus Shale development. Agricultural and Resource Economics Review, 44(2), 1–19.CrossRefGoogle Scholar
  185. Zavala-Araiza, D., Allen, D. T., Harrison, M., George, F. C., & Jersey, G. R. (2015a). Allocating methane emissions to natural gas and oil production from shale formations. ACS Sustainable Chemistry and Engineering, 3(3), 492–498.CrossRefGoogle Scholar
  186. Zavala-Araiza, D., Lyon, D. R., Alvarez, R. A., Davis, K. J., Harriss, R., Herndon, S. C., et al. (2015b). Reconciling divergent estimates of oil and gas methane emissions. Proceedings of the National Academy of Sciences, 112(51), 15597–15602.Google Scholar
  187. Zavala-Araiza, D., Sullivan, D. W., & Allen, D. T. (2014). Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region. Environmental Science and Technology, 48(9), 5314–5321.CrossRefGoogle Scholar
  188. Zhang, T., Hammack, R. W., & Vidic, R. D. (2015). Fate of radium in Marcellus shale flowback water impoundments and assessment of associated health risks. Environmental Science and Technology, 49(15), 9347–9354.CrossRefGoogle Scholar
  189. Zielinska, B., Campbell, D., & Samburova, V. (2014). Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: A pilot study. Journal of the Air and Waste Management Association, 64(12), 1369–1383.CrossRefGoogle Scholar
  190. Ziemkiewicz, P. F., Quaranta, J. D., Darnell, A., & Wise, R. (2014). Exposure pathways related to shale gas development and procedures for reducing environmental and public risk. Journal of Natural Gas Science and Engineering, 1(i6), 77–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • P. J. Saunders
    • 1
  • D. McCoy
    • 2
  • R. Goldstein
    • 3
  • A. T. Saunders
    • 4
  • A. Munroe
    • 5
  1. 1.University of StaffordshireStoke-on-TrentUK
  2. 2.Queen Mary University of LondonLondonUK
  3. 3.West Midlands Public Health Training SchemeBirminghamUK
  4. 4.carolan57 LtdBirminghamUK
  5. 5.MedactLondonUK

Personalised recommendations