Environmental Geochemistry and Health

, Volume 39, Issue 2, pp 307–317

Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida)

  • Tae-Hoon Nam
  • Leesun Kim
  • Hwang-Ju Jeon
  • Kyeongnam Kim
  • Yong-Sik Ok
  • Sung-Deuk Choi
  • Sung-Eun Lee
Original Paper

Abstract

α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC50 values of 9.7, 133.2, and 86.2 mg kg−1, respectively. A mixture toxicity assay was conducted using α-endosulfan at LC10 and fluorene or phenanthrene at LC50 in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.

Keywords

Polycyclic aromatic hydrocarbons α-Endosulfan MALDI-TOF MS Biomarker Eisenia fetida 

References

  1. Abraham, J., & Silambarasan, S. (2014). Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. Pesticide Biochemistry and Physiology, 116, 24–31.CrossRefGoogle Scholar
  2. Aggelides, S. M., & Londra, P. A. (2000). Effects of compost produced from town wastes and sewage sludge on the physical properties of a clay soil. Bioresource technology, 71, 253–259.CrossRefGoogle Scholar
  3. Bauer, M., Greenwood, S. J., Clark, K. F., Jackman, P., & Fairchild, W. (2013). Analysis of gene expression in Homarus americanus larvae exposed to sublethal concentrations of endosulfan during metamorphosis. Comparative Biochemistry and Physiology Genomics and Proteomics, 8, 300–308.CrossRefGoogle Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  5. Carriger, J. F., Hoang, T. C., Rand, G. M., Gardinali, P. R., & Castro, J. (2011). Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species. Archives of Environmental Contamination and Toxicology, 60, 281–289.CrossRefGoogle Scholar
  6. De Maria, I. C., Chiba, M. K., Costa, A., & Berton, R. S. (2010). Sewage sludge application to agricultural land as soil physical conditioner. Revista Brasileira de Ciência do Solo, 34, 967–974.CrossRefGoogle Scholar
  7. Eom, I. C., Rast, C., Veber, A. M., & Vasseur, P. (2007). Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicology and Environmental Safety, 67, 190–205.CrossRefGoogle Scholar
  8. González-Alcaraz, M. N., Tsitsiou, E., Wieldraaijer, R., Verweij, R. A., & Van Gestel, C. A. M. (2014). Effects of climate change on the toxicity of soils polluted by metal mine wastes to Enchytraeus crypticus. Environmental Toxicology and Chemistry, 34, 346–354.CrossRefGoogle Scholar
  9. Habig, W. H., & Jakoby, W. B. (1981). Assays for differentiation of glutathione S-transferase. Methods in Enzymology, 77, 398–405.CrossRefGoogle Scholar
  10. Han, J. H., Kim, M. J., & Shin, H. S. (2014). Evaluation of polycyclic aromatic hydrocarbon contents and risk assessment for infant formula in Korea. Journal of Korean Society for Applied Biological Chemistry, 57, 173–179.CrossRefGoogle Scholar
  11. Hu, T. (2014). A glutathione S-transferase confers herbicide tolerance in rice. Crop Breeding and Applied Biotechnology, 14, 76–81.CrossRefGoogle Scholar
  12. Hua, L., Wu, W. X., Liu, Y. X., Tientchen, C. M., & Chen, Y. X. (2008). Heavy metals and PAHs in sewage sludge from twelve wastewater treatment plants in Zhejiang Province. Biomedical and Environmental Science, 21, 345–352.CrossRefGoogle Scholar
  13. Jennings, A. A., & Li, Z. (2015). Residential surface soil guidance applied worldwide to the pesticides added to the Stockholm Convention in 2009 and 2011. Journal of Environmental Management, 160, 226–240.CrossRefGoogle Scholar
  14. Jeon, H. J., Lee, Y. H., Kim, M. J., Choi, S. D., Park, B. J., & Lee, S. E. (2016). Integrated biomarkers induced by chlorpyrifos in two different life stages of zebrafish (Danio rerio) for environmental risk assessment. Environmental Toxicology and Pharmacology, 43, 166–174.CrossRefGoogle Scholar
  15. Kim, E. J., Park, Y. M., Park, J. E., & Kim, J. G. (2014). Distributions of new Stockholm convention POPs in soils across South Korea. Science of the Total Environment, 476–477, 327–335.CrossRefGoogle Scholar
  16. Kumar, S. N., Telang, A. G., Patil, R. D., Jain, A. K., & Singh, K. P. (2014). Cytogenic effects of combined ochratoxin A and endosulfan in rats. Journal of Environmental Analysis and Toxicology, 4, 3.Google Scholar
  17. Kuśmierz, M., Oleszczuk, P., Kraska, P., Palys, E., & Andruszczak, S. (2016). Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 146, 272–279.CrossRefGoogle Scholar
  18. Lee, S. E., Choi, Y. W., Mo, H. H., Son, J., Park, K., & Cho, K. (2013). Endosulfan-induced biomarkers in Japanese rice fish (Oryzias latipes) analyzed by SELDI-TOF-MS. International Journal of Biological Sciences, 9, 343–349.CrossRefGoogle Scholar
  19. Lee, I., Eriksson, P., Fredriksson, A., Buratovic, S., & Viberg, H. (2015). Developmental neurotoxic effects of two pesticides: Behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology, 335, 1–10.CrossRefGoogle Scholar
  20. Lee, S.-E., & Lees, E. M. (2001). Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. Journal of Economic Entomology, 94, 706–713.CrossRefGoogle Scholar
  21. Lee, S.-E., Lees, E. M., & Campbell, B. C. (2000). Purification and characterization of an esterase conferring resistance to fenitrothion in Oryzaephilus surinamensis (L.) (Insecta, coleoptera, silvanidae). Journal of Agricultural and Food Chemistry, 48, 4991–4996.CrossRefGoogle Scholar
  22. Lubick, N. (2010). Environment. Endosulfan’s exit: U.S. EPA pesticide review leads to a ban. Science, 328(5985), 1466.CrossRefGoogle Scholar
  23. Mtshali, J. S., Tiruneh, A. T., & Fadiran, A. O. (2014). Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resources and Environment, 4, 190–199.Google Scholar
  24. Nam, T. H., Jeon, H. J., Mo, H. H., Cho, K., Ok, Y. S., & Lee, S. E. (2015). Selective biomarkers for polycyclic aromatic hydrocarbons in Eisenia fetida. Environmental Geochemistry and Health, 37, 943–951.CrossRefGoogle Scholar
  25. Nousiainen, U., Törrönen, R., & Hänninen, O. (1984). Differential induction of various carboxylesterases by certain polycyclic aromatic hydrocarbons in the rat. Toxicology, 32, 243–251.CrossRefGoogle Scholar
  26. OECD (Organisation for Economic Co-operation and Development). (1984). Guidelines for testing of chemicals No. 207. Earthworms, acute toxicity test. Paris: OECD.Google Scholar
  27. Odukkathil, G., & Vasudevan, N. (2015). Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. Journal of Environmental Science and Health B, 50, 81–89.CrossRefGoogle Scholar
  28. Park, D. S., Jeon, H. J., Park, E. S., Bae, I. K., Kim, Y. E., & Lee, S. E. (2015). Highly selective biomarkers for pesticides developed in Eisenia fetida using SELDI-TOF MS. Environmental Toxicology and Pharmacology, 39, 635–642.CrossRefGoogle Scholar
  29. Peklak-Scott, C., Smitherman, P. K., Twonsend, A. J., & Morrow, C. S. (2008). Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin. Molecular Cancer Therapeutics, 7, 3247–3255.CrossRefGoogle Scholar
  30. Rodrigues, A. P., Lehtonen, K. K., Guilhermino, L., & Guimarães, L. (2013). Exposure of Carcinus maenas to waterborne fluoranthene: Accumulation and multibiomarker responses. Science of the Total Environment, 443, 454–463.CrossRefGoogle Scholar
  31. Sanchez-Bayo, F. (2009). From simple toxicological models to prediction of toxic effects in time. Ecotoxicology, 18, 343–354.CrossRefGoogle Scholar
  32. SAS Institute. (2008). SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute.Google Scholar
  33. Saravanan, M., Kim, J. Y., Kim, H. N., Kim, S. B., Ko, D. H., & Hur, J. H. (2015). Ecotoxicological impacts of isoprothiolane on freshwater fish Cyprinus carpio fingerlings: a multi-biomarker assessment. Journal of Korean Society for Applied Biological Chemistry, 58, 491–499.CrossRefGoogle Scholar
  34. Svartz, G. V., Aronzon, C. M., & Perez Coll, C. S. (2016). Combined endosulfan and cypermethrin-induced toxicity to embryo–larvae development of Rhinella arenarum. Journal of Toxicology and Environmental Health A, 79, 197–209.CrossRefGoogle Scholar
  35. USACHPPM. (2008). Wildlife toxicity assessment for phenol. Project Number 87-MA02T6-05E, U. A. Aberdeen Proving Ground, Maryland.Google Scholar
  36. Velasco, A., Hernández, S., Ramírez, M., & Ortíz, I. (2014). Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region of San Luis Potosi, Mexico. Journal of Environmental Science and Health B, 49, 498–504.CrossRefGoogle Scholar
  37. Wu, S., Xu, X., Zhao, S., Shen, F., & Chen, J. (2013). Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): An ecotoxicoproteomics approach. Chemosphere, 93, 963–971.CrossRefGoogle Scholar
  38. Wu, S., Zhang, H., Zhao, S., Wang, J., Li, H., & Chen, J. (2012). Biomarker responses of earthworms (Eisenia fetida) exposure to phenanthrene and pyrene both singly and combined in microcosm. Chemosphere, 87, 285–293.CrossRefGoogle Scholar
  39. Yu, S., Wages, M., Willming, M., Cobb, G. P., & Maul, J. D. (2015). Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae. Environmental Pollution, 207, 248–255.CrossRefGoogle Scholar
  40. Yuk, J., Simpson, M. J., & Simpson, A. J. (2013). 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. Environmental Pollution, 175, 35–44.CrossRefGoogle Scholar
  41. Zhou, Y., Asplund, L., Yin, G., Athanassiadis, I., Wideqvist, U., Bigert, A., et al. (2016). Extensive organohalogen contamination in wildlife from a site in the Yangtze River Delta. Science of the Total Environment, 554–555, 320–328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguKorea
  2. 2.Department of Biological Environment, Korea Biochar Research CenterKangwon National UniversityChuncheonKorea
  3. 3.School of Urban and Environmental EngineeringUlsan National Institute of Science and TechnologyUlsanKorea

Personalised recommendations