Environmental Geochemistry and Health

, Volume 39, Issue 4, pp 901–911 | Cite as

Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan

  • Guor-Cheng Fang
  • Chaur-Tsuen Lo
  • Meng-Hsien Cho
  • Yuan-Jie Zhuang
  • Kai-Hsiang Tsai
  • Chao-Yang Huang
  • You-Fu Xiao
Original Paper
  • 135 Downloads

Abstract

The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.

Keywords

Reactive gaseous mercury Particulate-bound mercury Total gaseous mercury Direct mercury analyzer 

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). (1999). Toxicological profile for mercury, Georgia.Google Scholar
  2. Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B., & Rappengluck, B. (2010). Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas. Atmospheric Environment, 44, 4045–4055.CrossRefGoogle Scholar
  3. Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P. C., Hafner, W., Weiss-Penzias, P., et al. (2008). Reactive and particulate mercury in the Asian marine boundary layer. Atmospheric Environment, 42, 7988–7996.CrossRefGoogle Scholar
  4. Chen, L., Liu, M., Xu, Z., Fan, R., Tao, J., Chen, D., et al. (2013). Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons. Atmospheric Environment, 77, 757–766.CrossRefGoogle Scholar
  5. Cheng, I., Zhang, L., Mao, H., Blanchard, P., Tordon, R., & Dalziel, J. (2014). Seasonal and diurnal patterns of speciated atmospheric mersury at a coastal-rural and a coastal-urban site. Atmospheric Environment, 82, 193–205.CrossRefGoogle Scholar
  6. Choi, H. D., Holsen, T. M., & Hopke, P. K. (2008). Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources. Environmental Science and Technology, 42, 5644–5653.CrossRefGoogle Scholar
  7. Choi, H. D., Huang, J., Mondal, S., & Hol, T. M. (2013). Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Science of the Total Environment, 448, 96–106.CrossRefGoogle Scholar
  8. Choi, E. M., Kim, S. H., Holsen, T. M., & Yi, S. M. (2009). Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution, 157(3), 816–822.CrossRefGoogle Scholar
  9. Draxler, R. R. (1999). HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.Google Scholar
  10. Fang, G. C., Cheng, M. T., & Chang, C. N. (1997). Monitoring and modeling the mass, heavy metal and ion species dry deposition in central Taiwan. Journal of Environmental Science and Health. Part A, A32(8), 2183–2199.Google Scholar
  11. Fang, G. C., Huang,Y. L., Huang, J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203–204(15), 158–168.CrossRefGoogle Scholar
  12. Fang, G. C., Lin, S. J., Chang, S. Y., & Chou, C. C. K. (2009). Effect of typhoon on atmospheric particulates in autumn in central Taiwan. Atmospheric Environment, 43(38), 6039–6048.CrossRefGoogle Scholar
  13. Fang, F., Wang, Q., & Li, J. (2004). Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Science of the Total Environment, 330(1–3), 159–170.CrossRefGoogle Scholar
  14. Fu, X. W., Feng, X., Deliger, P. L., Zhang, H., Ji, J., & Liu, P. (2012). Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 12, 1951–1964.CrossRefGoogle Scholar
  15. Fu, X., Feng, X., Qiu, G., Shang, L., & Zhang, H. (2011). Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 45, 4205–4212.CrossRefGoogle Scholar
  16. Gabriel, M. C., Williamson, D. G., Brooks, S., & Lindberg, S. (2005). Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment, 39, 4947–4958.Google Scholar
  17. Gavilan-García, I. C., Fernandez-Villagomez, G., Gavilan-García, A., & Alcantara-Concepcion, V. (2015). Alternatives of management and disposal for mercury thermometers at the end of their life from Mexican health care institutions. Journal of Cleaner Production, 86, 118–124.Google Scholar
  18. Gratz, L. E., Keeler, G. J., Marsik, F. J., Barres, J. A., & Dvonch, J. T. (2013). Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Science of the Total Environment, 448, 84–95.CrossRefGoogle Scholar
  19. Han, Y. J., Holsen, T. M., Lai, S. O., Hopke, P. K., Yi, S. M., Liu, W., et al. (2004). Atmospheric gaseous mercury concentrations in New York State: Relationships with meteorological data and other pollutants. Atmospheric Environment, 38, 6431–6446.CrossRefGoogle Scholar
  20. Han, Y. J., Kim, J. E., Kim, P. R., Kim, W. J., Yi, S. M., Seo, Y. S., et al. (2014). General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events. Atmospheric Environment, 94, 754–764.CrossRefGoogle Scholar
  21. Huang, J., Liu, C. K., Huang, C. S., & Fang, G. C. (2012). Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level. Chemosphere, 87, 579–585.CrossRefGoogle Scholar
  22. Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., et al. (2005). Export of atmospheric mercury from Asia. Atmospheric Environment, 39, 3029–3038.CrossRefGoogle Scholar
  23. Jen, Y. H., Yuan, C. S., Hung, C. H., Ie, I. R., & Tsai, C. M. (2013). Tempospatial variation and partition of atmospheric mercury during wet and dry seasons at sensitivity sites within a heavily polluted industrial city. Aerosol and Air Quality Research, 13(13–23), 2013.Google Scholar
  24. Jiang, Y., Cizdziel, J. V., & Lu, D. (2013). Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings. Chemosphere, 93(9), 1694–1700.CrossRefGoogle Scholar
  25. Kim, S. H., Han, Y. J., Holsen, T. M., & Yi, S. M. (2009). Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea. Atmospheric Environment, 43, 3267–3274.CrossRefGoogle Scholar
  26. Kim, K. H., Yoon, H. O., Brown, R. J. C., Jeon, E. C., Sohn, J. R., Jung, K., et al. (2013). Simultaneous monitoring of total gaseous mercury at four urban monitoring stations in Seoul, Korea. Atmospheric Research, 132–133, 199–208.CrossRefGoogle Scholar
  27. Kock, H. H., Bieber, E., Ebinghaus, R., Spain, T. G., & Thees, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39, 7549–7556.CrossRefGoogle Scholar
  28. Kocman, D., Horvat, M., Pirrone, N., & Cinnirella, S. (2013). Contribution of contaminated sites to the global mercury budget. Environmental Research, 125, 160–170.CrossRefGoogle Scholar
  29. Kuo, T. H., Chang, C. F., Urba, A., & Kvietkus, K. (2006). Atmospheric gaseous mercury in Northern Taiwan. Science of the Total Environment, 368, 10–18.CrossRefGoogle Scholar
  30. Landis, M. S., & Keeler, G. J. (2002). Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environmental Science and Technology, 36, 4518–4524.CrossRefGoogle Scholar
  31. Li, X., & Zhang, H. (2012). Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011. Atmospheric Environment, 61, 51–65.Google Scholar
  32. Lin, C. C., Chen, S. J., & Huang, K. L. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, 39(21), 8113–8122.CrossRefGoogle Scholar
  33. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., et al. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32.CrossRefGoogle Scholar
  34. Liu, F., Cheng, H., Yang, K., Zhao, C., Liu, Y., Peng, M., et al. (2014). Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City. Journal of Geochemical Exploration, 139, 115–121.CrossRefGoogle Scholar
  35. Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., et al. (2007). Temporal variability of mercury speciation in urban air. Atmospheric Environment, 41, 1911–1923.CrossRefGoogle Scholar
  36. Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., et al. (2010). Urban−rural differences in atmospheric mercury speciation. Atmospheric Environment, 44, 2013–2023.CrossRefGoogle Scholar
  37. Lyman, S. N., & Gustin, M. S. (2009). Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A. Science of the Total Environment, 408, 431–438.CrossRefGoogle Scholar
  38. Ma, F., Peng, C., Hou, D., Wu, B., Zhang, Q., Li, F., et al. (2015). Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300, 546–552.CrossRefGoogle Scholar
  39. Masahiro, S., & Kohji, M. (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39, 3139–3146.CrossRefGoogle Scholar
  40. Mason, R. P., & Sullivan, K. A. (1997). Mercury in lake Michigan. Environmental Science and Technology, 31, 942–947.CrossRefGoogle Scholar
  41. May, A. A., Ashman, P., Huang, J., Dhaniyala, S., & Holsen, T. M. (2011). Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements. Atmospheric Environment, 45(26), 4354–4359.CrossRefGoogle Scholar
  42. Narukawa, M., Sakata, M., Marumoto, K., & Asakura, K. (2006). Air-sea exchange of mercury in Tokyo Bay. Journal of Oceanography, 62, 249–257.CrossRefGoogle Scholar
  43. Nguyen, H. T., Kim, M. Y., & Kim, K. H. (2010). The influence of long-range transport on atmospheric mercury on Jeju Island, Korea. Science of the Total Environment, 408, 1295–1307.CrossRefGoogle Scholar
  44. Odabasi, M., Muezzinoglu, A., & Bozlaker, A. (2002). Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmospheric Environment, 36, 5841–5851.CrossRefGoogle Scholar
  45. Pacyna, E., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.CrossRefGoogle Scholar
  46. Pan, L., Lin, C. J., Carmichael, G. R., Streets, D. G., Tang, Y., Woo, J. H., et al. (2010). Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 408, 3277–3291.CrossRefGoogle Scholar
  47. Poissant, L., Pilote, M., Beauvais, C., Constant, P., & Zhang, H. H. (2005). A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Québec, Canada. Atmospheric Environment, 39, 1275–1287.CrossRefGoogle Scholar
  48. Sakata, M., & Marumoto, K. (2002). Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmospheric Environment, 36, 239–246.CrossRefGoogle Scholar
  49. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury: An overview. Atmospheric Environment, 32, 809–822.CrossRefGoogle Scholar
  50. Shahin, U. M., Zhu, X., & Holsen, T. M. (1999). Dry deposition of reduced and reactive nitrogen: A surrogate surfaces approach. Environmental Science and Technology, 33, 2113–2117.CrossRefGoogle Scholar
  51. Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou Yang, C. F., & Wang, S. H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment, 44, 2393–2400.CrossRefGoogle Scholar
  52. United Nations Environment Programme (UNEP). (2002). Global mercury assessment. Geneva, Switzerland.Google Scholar
  53. United Nations Environment Programme (UNEP). (2013). Global mercury assessment 2013: Sources, emissions, releases, and environmental transport. Geneva, Switzerland.Google Scholar
  54. United Nations Environment Programme. (UNEP). (2013). Technical background report for the global Hg assessment (Geneva).Google Scholar
  55. Valente, R. J., Shea, C., Humes, K. L., & Tanner, R. L. (2007). Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41, 1861–1873.CrossRefGoogle Scholar
  56. Wang, L., Wang, S. X., Zhang, L., Wang, Y. X., Zhang, Y. X., Nielsen, C., et al. (2014). Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 190, 166–175.CrossRefGoogle Scholar
  57. Witt, M. L. I., Mather, T. A., Baker, A. R., De Hoog, J. C. M., & Pyle, D. M. (2010). Atmospheric trace metals over the south-west Indian Ocean: Total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios. Marine Chemistry, 121, 2–16.CrossRefGoogle Scholar
  58. Wu, Y., Wang, S. X., Streets, D. G., Hao, J. M., Chan, M., & Jiang, J. K. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 40, 5312–5318.CrossRefGoogle Scholar
  59. Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L., et al. (2015). Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere, 119, 530–539.CrossRefGoogle Scholar
  60. Yang, Y., Chen, H., & Wang, D. (2009). Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 156, 479–489.CrossRefGoogle Scholar
  61. Zhang, Y., Xiu, G., Wu, X., Moore, C. W., Wang, J., Cai, J., et al. (2013). Characterization of mercury concentrations in snow and potential sources, Shanghai, China. Science of the Total Environment, 449, 434–442.CrossRefGoogle Scholar
  62. Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., & Munthe, J. (2005). Seasonal mercury concentrations measured in rural air in Southern Poland Contribution from local and regional coal combustion. Atmospheric Environment, 39, 7580–7586.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Guor-Cheng Fang
    • 1
  • Chaur-Tsuen Lo
    • 2
  • Meng-Hsien Cho
    • 1
  • Yuan-Jie Zhuang
    • 1
  • Kai-Hsiang Tsai
    • 1
  • Chao-Yang Huang
    • 1
  • You-Fu Xiao
    • 1
  1. 1.Department of Safety, Health and Environmental EngineeringHung Kuang UniversitySha-Lu, TaichungTaiwan, ROC
  2. 2.Department of BiotechnologyNational Formosa UniversityYunlinTaiwan, ROC

Personalised recommendations