Advertisement

Environmental Geochemistry and Health

, Volume 39, Issue 4, pp 821–833 | Cite as

Biological properties of mud extracts derived from various spa resorts

  • Eliana Spilioti
  • Margarita Vargiami
  • Sophia Letsiou
  • Konstantinos Gardikis
  • Varvara Sygouni
  • Petros Koutsoukos
  • Ioanna Chinou
  • Eva Kassi
  • Paraskevi MoutsatsouEmail author
Original Paper

Abstract

Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.

Keywords

Mud Inflammation Endothelial cells Skin aging Keratinocytes 

Abbreviations

AD

Atopic dermatitis

AQP3

Aquaporin-3

Col6A1

Collagen 6A1

FOXO3

Forkhead box

HAEC

Human aortic endothelial cells

ICAM

Intracellular adhesion molecule

VCAM

Vascular cell adhesion molecule

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

SIRT1

Sirtuin-1

SOD1

Superoxide dismutase

TNF

Tumor necrosis factor

αΤ3

α-Tocotrienol

BCECF-AM

20,70-Bis-(2-carboxyethyl)-5-(and-6)-carboxy-fluorescein acetoxymethyl ester

Notes

Acknowledgments

We thank the Greek Secretariat of Research and Technology, Greek Ministry of Education and Religion (ISR_3163) in cooperation with the company Apivita S.A. We also thank Mr. Georgio Georgiadi from the company Physis & Ousia for providing the mud samples from Messologi and Ms. Liora Chilron from the company Anna Lotan for providing the mud sample from Israel that greatly assisted our research.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10653_2016_9852_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)

References

  1. Boury-Jamot, M., Daraspe, J., Bonté, F., Perrier, E., Schnebert, S., Dumas, M., et al. (2009). Skin aquaporins: Function in hydration, wound healing, and skin epidermis homeostasis. Handbook of Experimental Pharmacology, 190, 205–217.CrossRefGoogle Scholar
  2. Braydich-Stolle, L. K., Lucas, B., Schrand, A., Murdock, R. C., Lee, T., Schlager, J. J., et al. (2010). Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 116(2), 577–589.CrossRefGoogle Scholar
  3. Cozzi, F., Carrara, M., Sfriso, P., Todesco, S., & Cima, L. (2004). Anti-inflammatory effect of mud-bath applications on adjuvant arthritis in rats. Clinical and Experimental Rheumatology, 22(6), 763–766.Google Scholar
  4. Crouch, S. P., Kozlowski, R., Slater, K. J., & Fletcher, J. (1993). The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. Journal of Immunological Methods, 160(1), 81–88.CrossRefGoogle Scholar
  5. Curri, S. B., Bombardelli, E., & Grossi, F. (1997). Observations on organic components of thermal mud: Morphohistochemical and biochemical studies on lipid components of mud of the Terme dei Papi (Laghetto del Bagnaccio, Viterbo). Chemical bases of the interpretation of biological and therapeutic actions of thermal mud. Clinica Terapeutica, 148(12), 637–654.Google Scholar
  6. Damianakos, H., Kretschmer, N., Sykłowska-Baranek, K., Pietrosiuk, A., Bauer, R., & Chinou, I. (2012). Antimicrobial and cytotoxic isohexenylnaphthazarins from Arnebia euchromia (Royle) Jonst (Boraginaceae) callus and cell suspension culture. Molecules, 17, 14310–14322.CrossRefGoogle Scholar
  7. Deters, A. M., Schröder, K. R., & Hensel, A. (2005). Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. Journal of Cellular Physiology, 202, 717–722.CrossRefGoogle Scholar
  8. Fioravanti, A., Cantarini, L., Guidelli, G. M., & Galeazzi, M. (2011). Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatology International, 31(1), 1–8.CrossRefGoogle Scholar
  9. Giacomino, M. I., & de Michele, D. F. (2007). Is mud an anti-inflammatory? Anales de Medicina Interna, 24(7), 352–353.CrossRefGoogle Scholar
  10. Hara-Chikuma, M., & Verkman, A. S. (2008). Roles of aquaporin-3 in the epidermis. Journal of Investigative Dermatology, 128(9), 2145–2151.CrossRefGoogle Scholar
  11. Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35, 146–154.CrossRefGoogle Scholar
  12. Jung, K., Linse, F., Heller, R., Moths, C., Goebel, R., & Neumann, C. (1996). Adhesion molecules in atopic dermatitis: VCAM-1 and ICAM-1 expression is increased in healthy-appearing skin. Allergy, 51(7), 452–460.CrossRefGoogle Scholar
  13. Makrantonaki, E., & Zouboulis, C. C. (2007). Molecular mechanisms of skin aging: State of the art. Annals of the New York Academy of Sciences, 1119, 40–50.CrossRefGoogle Scholar
  14. Mestas, J., & Ley, K. (2008). Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in Cardiovascular Medicine, 18(6), 228–232.CrossRefGoogle Scholar
  15. Odabasi, E., Gul, H., Macit, E., Turan, M., & Yildiz, O. (2007). Lipophilic components of different therapeutic mud species. Journal of Alternative and Complementary Medicine, 13(10), 1115–1118.CrossRefGoogle Scholar
  16. Portugal-Cohen, M., Soroka, Y., Ma’or, Z., Oron, M., Zioni, T., Brégégère, F. M., et al. (2009). Protective effects of a cream containing Dead Sea minerals against UVB-induced stress in human skin. Experimental Dermatology, 18(9), 781–788.CrossRefGoogle Scholar
  17. Ramakers, C., Ruijter, J. M., Deprez, R. H., & Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339(1), 62–66.CrossRefGoogle Scholar
  18. Rimmelé, P., Bigarella, C. L., Liang, R., Izac, B., Dieguez-Gonzalez, R., Barbet, G., et al. (2014). Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports, 3, 44–59.CrossRefGoogle Scholar
  19. Rosas-Hernández, H., Jiménez-Badillo, S., Martínez-Cuevas, P. P., Gracia-Espino, E., Terrones, H., Terrones, M., et al. (2009). Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicology Letters, 191(2–3), 305–313.CrossRefGoogle Scholar
  20. Sigurdsson, V., de Vries, I. J., Toonstra, J., Bihari, I. C., Thepen, T., Bruijnzeel-Koomen, C. A., et al. (2000). Expression of VCAM-1, ICAM-1, E-selectin, and Pselectin on endothelium in situ in patients with erythroderma, mycosis fungoides and atopic dermatitis. Journal of Cutaneous Pathology, 27, 436–440.CrossRefGoogle Scholar
  21. Stefani, M., Markus, M. A., Lin, R. C., Pinese, M., Dawes, I. W., & Morris, B. J. (2007). The effect of resveratrol on a cell model of human aging. Annals of the New York Academy of Sciences, 1114, 407–418.CrossRefGoogle Scholar
  22. Steinhoff, M., Steinhoff, A., Homey, B., Luger, T. A., & Schneider, S. W. (2006). Role of vasculature in atopic dermatitis. Journal of Allergy and Clinical Immunology, 118(1), 190–197.CrossRefGoogle Scholar
  23. Tamaki, K., & Nakamura, K. (2001). The role of lymphocytes in healthy and eczematous skin. Current opinion in Allergy and Clinical Immunology, 1, 455–460.CrossRefGoogle Scholar
  24. Theriault, A., Chao, J. T., & Gapor, A. (2002). Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes. Atherosclerosis, 160, 21–30.CrossRefGoogle Scholar
  25. Trickler, W. J., Lantz-McPeak, S. M., Robinson, B. L., Paule, M. G., Slikker, W, Jr., Biris, A. S., et al. (2014). Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metabolism Reviews, 46(2), 224–231.CrossRefGoogle Scholar
  26. van der Wal, A. C., Das, P. K., Tigges, A. J., & Becker, A. E. (1992). Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. American Journal of Pathology, 141(6), 1427–1433.Google Scholar
  27. Verdier-Sévrain, S. (2007). Effect of estrogens on skin aging and the potential role of selective estrogen receptor modulators. Climacteric, 10(4), 289–297.CrossRefGoogle Scholar
  28. Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. In J. H. Lawton & G. E. Likens (Eds.), Methods in ecology. Oxford: Blackwell Scientific Publications.Google Scholar
  29. Zagklis, D. P., Vavouraki, A. I., Kornaros, M. E., & Paraskeva, C. A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. Journal of Hazardous Materials, 285, 69–76.CrossRefGoogle Scholar
  30. Zajdel, S. M., Graikou, K., Sotiroudis, G., Głowniak, K., & Chinou, I. (2013). Two new iridoids from selected Penstemon species—Antimicrobial activity. Natural Product Research, 27(24), 2263–2271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Eliana Spilioti
    • 1
  • Margarita Vargiami
    • 1
  • Sophia Letsiou
    • 2
  • Konstantinos Gardikis
    • 2
  • Varvara Sygouni
    • 3
  • Petros Koutsoukos
    • 3
  • Ioanna Chinou
    • 4
  • Eva Kassi
    • 1
  • Paraskevi Moutsatsou
    • 1
    • 5
    Email author
  1. 1.Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  2. 2.Scientific Affairs DepartmentAPIVITA SAAthensGreece
  3. 3.Department of Chemical EngineeringUniversity of Patras and FORTH-ICEHT PatrasPatrasGreece
  4. 4.Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of PharmacyUniversity of AthensAthensGreece
  5. 5.Department of Clinical Biochemistry, Medical School, University Hospital “Attiko”National and Kapodistrian University of AthensAthensGreece

Personalised recommendations