Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 2037–2048 | Cite as

Study of worker’s exposure to Tantalum-bearing particles in a mining and metallurgical plant

  • K. Moore Dias da Cunha
  • K. C. Dalia Pereira
  • J. R. D. Guimarães
  • C. Lima
  • J. E. C. Nascimento
  • R. Lima
  • A. A. Hecht
  • J. C. B. Fiel
Original Paper
  • 97 Downloads

Abstract

The objective of this study was to assess worker exposure to mineral dust particles, and a metabolic model, based on the model adopted by ICRP, was applied to assess human exposure to Ta, and predicted values of Ta concentrations in excreta. The occupational exposure to Th, U, Nb, and Ta-bearing particles during routine tasks to obtain Fe-Nb alloys was estimated using air samplers and excreta samples. Ta concentrations in food samples and in drinking water were also determined. The results support that workers were occupationally exposed to Ta-bearing particles, and also indicate that a source of Ta exposure for both workers and the control group was the ingestion of drinking water containing soluble compounds of Ta. Therefore, some Ta compounds should be considered soluble compounds in gastrointestinal tract. Consequently, the metabolic model based on ICRP metabolic model and/or the transfer factor f 1 for Ta should be reviewed and the solubility of Ta compounds in gastrointestinal should be determined.

Keywords

Uranium Thorium Tantalum Solubility parameters Occupational exposure 

Notes

Acknowledgments

The authors would like to thank Mineração Catalão de Goiás for the support during the sample collection and CNPq and PRONEX for financial support. This work is in memoriam to Prof. Carlos Vieira de Barros Leite, Physics Department PUC-Rio, Brazil.

REFERENCES

  1. ACGIH American Conference of Government Industrial Hygienists (ACGIH). (1996). The Threshold Limit Value (TLVs) and Biological Exposure Indices (BEIs) booklet issues ACGIH. Cincinnati Ohio: Technical Affairs office ACGIH.Google Scholar
  2. Ansoborlo, E., Chazel, V., Hengé-Napoli, M. H., Pihet, P., Rannou, A., Bailey, M. R., & Stradling, N. (2002). Determination of the physical and chemical properties, biokinetics, and dose coefficients of Uranium compounds handled during nuclear fuel fabrication in France. Health Physics, 82(3), 279–289.CrossRefGoogle Scholar
  3. Australian government—Geoscience Australian. (2014). Accessed January 4,http://www.ga.gov.au/data-pubs/data-and-publications-search/publications/aimr/tantalum
  4. Baily, M. R., Ansorbolo, E., Guilmette, R. A., & Paquet, F. (2003). Practical application of the ICRP. Human respiratory tract model. Radiation Protection Dosimetry, 105(1–40), 71–71.CrossRefGoogle Scholar
  5. Bertelli, L., & Lipsztein, J. L. (1987). Mathematical simulation for the study of radionuclide kinetics in the human body. Radiation Protection Dosimetry, 18(4), 209–214.CrossRefGoogle Scholar
  6. Birchall, A., & James, A. C. (1989). A microcomputer algorithm for solving first-order compartmental models involving recycling. Health Physics, 56, 857–868.CrossRefGoogle Scholar
  7. Blanco, A., Gibb, F. R., Kilpper, R. W., Landman, S., & Morrow, P. E. (1974). Studies of Tantalum dust in the lungs. Radiology, 112, 549–556.CrossRefGoogle Scholar
  8. Cardonne, S. M., Kumar, P., Michaluk, C. A., & Schwart, H. D. (1995). Tantalum and its alloys. International Journal of Refractory Metals & Hard Materials, 13(4), 187–194.CrossRefGoogle Scholar
  9. Carvalho, S. M. M., Dias da Cunha, K., & Baptista, G. (1988). Particle size distribution of yellowcake. Annual Occupational Hygiene, 32, 870–885.Google Scholar
  10. Chaneliere, C., Autran, J. L., Devine, R. A. B., & Balland, B. (1998). Tantalum pentoxide (Ta2O5) thin films for advanced dielectric application. Materials Science and Engineering: R: Reports, 22(6), 269–322.CrossRefGoogle Scholar
  11. Coulston, F., Korte, F. (1975). Heavy Metal Toxicity, Safety and Hormology. Environmental Quality and Safety, Supplement 1. New York: George Thieme Publishers, p.1120.Google Scholar
  12. Cunningham, D. L., (2001). Columbium (Niobium) and Tantalum U.S. Geological Survey Minerals Yearbook. 21.1-21-7.Google Scholar
  13. Dalia Pereira, D. K. C. (2006). PhD Dissertation: Estudo da Exposição Ocupacional a Tântalo e Radionuclídeos Naturais. (in Portuguese) Programa de Pós-Graduação em Ciências Biológicas. IBCCF, Universidade Federal do Rio de Janeiro (UFRJ). Brazil. of Airborne Particulates in Monazite Dust. Nuclear Instruments and Methods in Physics Research. A, 492–494.Google Scholar
  14. Dias da Cunha, K. M. (1997). Contribuição ao Estudo da Exposição Ocupacional ao Tório. PhD Thesis (In Portuguese) Programa de Pós-Graduação Em Ciências Biológicas. IBCCF, Universidade Federal do Rio de Janeiro (UFRJ). Brazil.Google Scholar
  15. Dias da Cunha, K. M., Carvalho, S. M. M., Baptista, G., Paschoa, A. S., Barros Leite, C. V. (1989). Size Distribution of Airborne Particulates in Monazite Dust. Nuclear Instruments and Methods in Physics research section A. Accelerators, spectrometers detectors and associated equipment, 280(2-3)10, 492–494Google Scholar
  16. Dias da Cunha, K. M., Lipsztein, J. L., Azeredo, A. M., Melo, D., Julião, L. M. Q. C., Lamego, F. F., et al. (2002). Study of worker’s exposure to Thorium, Uranium and Niobium mineral dust. Water soil and Air Pollution, 137, 45–61.CrossRefGoogle Scholar
  17. Dias da Cunha, K. M., Lipsztein, J. L., & Barros Leite, C. V. (1998b). Occupational exposure to Thorium in two Brazilian Niobium plants. Radiation Protection Dosimetry, 79, 63–66.CrossRefGoogle Scholar
  18. Dias da Cunha, K. M., Lipsztein, J. L., Fang, C. P., & Barros Leite, C. V. (1998a). A cascade impactor for mineral particle analysis. Journal Aerosol Science and Technology, 29(2), 126–132.CrossRefGoogle Scholar
  19. Eckerman, K. F., Leggett, R. W., & Williams, L. R. (1992). An elementary method for solving compartmental models with time-dependent coefficients. Radiation Protection Dosimetry, 41, 257–263.CrossRefGoogle Scholar
  20. Edmunds, L. H, Jr., Graf, P. D., Sagel, S. S., & Greenspan, R. H. (1970). Radiographic observation of clearance of tantalum and barium sulfate particles from airways. Investigative Radiology, 5, 131–141.CrossRefGoogle Scholar
  21. Friedman, P. J., & Tisi, G. M. (1972). Alveolarization of Tantalum powder in experimental bronchography and the clearance of inhaled particles from the lung. Radiology, 104, 523–535.CrossRefGoogle Scholar
  22. Gamsu, G., Weintraub, R. M., & Nadel, J. A. (1973). Clearance of Tantalum from airways of different caliber in man evaluated by a röentgenographic method. American Review Respiratory Disease, 107, 214–224.Google Scholar
  23. ICRP International Commission on Radiological Protection (ICRP). (2002). Supporting Guidance 3: Guide for the Practical Application of the ICRP Human Respiratory Tract Model. Oxford: Pergamon Press.Google Scholar
  24. ICRP-23 International Commission on Radiological Protection (ICRP) (1973). Report of the task group on reference man. ICRP Publication 23. Oxford: Pergamon Press. Oxford.Google Scholar
  25. ICRP-30 International Commission on Radiological Protection (ICRP) (1979). Limits for intakes of radionuclides by workers. ICRP Publication 30. Pergamon Press, OxfordGoogle Scholar
  26. ICRP-54 International Commission on Radiological Protection (ICRP) (1989). Individual Monitoring for Intakes of Radionuclides by Workers: Design and Interpretation. ICRP Publication 54. Pergamon Press, Oxford.Google Scholar
  27. ICRP-56 International Commission on Radiological Protection (ICRP) (1989). Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1. ICRP Publication 56. Pergamon Press, Oxford.Google Scholar
  28. ICRP-66 International Commission on Radiological Protection (ICRP-66) (1994). Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Pergamon Press, Oxford.Google Scholar
  29. ICRP-78 International Commission on Radiological Protection (ICRP) (1999). Individual Monitoring for Internal Exposure of Workers: Replacement of ICRP Publication 54. ICRP Publication 78. Pergamon Press, Oxford.Google Scholar
  30. Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Mäkeläinen, I., et al. (2002). Renal effects of Uranium in drinking water. Environmental Health Perspectives, 110(4), 337–342.CrossRefGoogle Scholar
  31. Li, W. B., Wahl, W., Oeh, U., Höllriegl, V., & Roth, P. (2007). Biokinetic modelling of natural thorium in humans by ingestion. Radiation Protection Dosimetry, 125(1–4), 500–505.Google Scholar
  32. Lima, C., Coelho, M. J., Dalia Pereira, K. C., Barros Leite, C. V., & Dias da Cunha, K. (2007). Tantalum dissolution rate in simulant lung fluid. Water soil and Air Pollution, 186, 365–371.CrossRefGoogle Scholar
  33. Linsalata, P., Morse, R., Ford, H., & Eisenbud, M. (1991). Th, U, Ra and rare earth element distribution in farm animal tissues from an elevated natural radiation background environment. Journal of Environmental Radioactivity, 14, 233–257.CrossRefGoogle Scholar
  34. Lipsztein, J. L., Dias da Cunha, K. M., Azeredo, A. M. G., Juliao, L., Santos, M., Melo, D. R., & Simões Filho, F. F. L. (2001). Exposure of workers in mineral processing industries in Brazil. Journal of Environmental Radioactivity, 54, 189–199.CrossRefGoogle Scholar
  35. Llamas, R., Ortiz, J., Perz, A. R., & Baum, G. L. (1969). Experimental bronchography by tantalum insufflations. Chest Journal, 56, 75–77.Google Scholar
  36. Machlin, L. J., Pearson, P. B., & Denton, C. A. (1952). Relative toxicity of Lanthanum, Tantalum and Thorium compounds in the developing chick embryo. Archives of Industrial Hygiene and Occupational Medicine, 6, 441–444.Google Scholar
  37. Matthay, R. A., Putman, C. E., Gee, J. B. L., Walker, S. G. J., Mccloud, T., & Greenspan, R. H. (1977). Tantalum Oxide and Alveolar macrophage function. Investigative Radiology, 12(3), 292–294.CrossRefGoogle Scholar
  38. Metzger, R., & Cole, L. (2004). Solubility characterization of airborne Uranium from a recycling plant. Health Physics, 87, 89–91.CrossRefGoogle Scholar
  39. Nadel, J. A., Wolfe, W. G., & Graf, P. D. (1968). Powdered Tantalum as a medium for bronchography in canine and human lungs. Investigative Radiology, 3, 229–238.CrossRefGoogle Scholar
  40. Nascimento, J.E.C. (1994). Método Para A Estimativa De Doses Internas em Trabalhadores e Indivíduos Do Público. PhD thesis (in Portuguese) Programa de Pós-Graduação em Biociencias nucleares. Instituto de Biologia da Universidade do Estado do Rio de Janeiro (UERJ).Google Scholar
  41. Patocka, J., Kassa, J., Stetina, R., Safr, G., & Havel, J. (2004). Toxicological aspects of depleted Uranium. Journal of Applied Biomedicine, 2, 37–42.Google Scholar
  42. Pietrzak-Flis, Z., Kaminska, I., & Chrzanowski, E. (2005). Uranium isotopes in public drinking water and dose assessment for man in Poland. Radiation Protection Dosimetry, 113(1), 34–39.CrossRefGoogle Scholar
  43. Scapolant, S., Ansoborlo, E., Moulin, C., & Madic, C. (1998). Uranium (VI)—transferrin system studied by time—resolved laser—induced fluorescence. Radiation Protection Dosimetry, 79, 505–508.CrossRefGoogle Scholar
  44. Sill, Claude W., Voelz, George L., Olson, Dale G., & Anderson, Jesse I. (1969). Two studies of acute internal exposure to man involving Cerium and Tantalum radioisotopes. Health Physics, 16, 325–332.CrossRefGoogle Scholar
  45. Skrable, K. W., Chabot, G. E., French, C. S., Wrenn, M. E., Lipsztein, J., Sasso, L. T., & Durbin, P. W. (1980). Blood organ transfer kinetics. Health Physics, 39, 193–209.CrossRefGoogle Scholar
  46. Smith, G. C., Stitick, F. P., & Proctor, D. F. (1976). Tantalum bronchography in the radiologically occult cancer. American Reviews On Respiratory Diseases, 113, 119–121.Google Scholar
  47. Straddling, N., Hodgson, A., Ansorbolo, E., Berard, P., Etherington, G., Fell, T., Rance, E., Le Gue, B., (2002). Industrial Uranium Compounds: Exposure Limits, Assessment of Intake and Toxicity after Inhalation. Report number NRPB-W22, National Radiological Protection Board. 118 p.; ill. (chiefly col.); 30 cm.; pbk; ISBN 08-595149-3-5; Available from British Library Document Supply Centre- DSC:9091. 900(NRPB-W22); Country of input: International Atomic Energy Agency (IAEA); Includes bibliographical references.Google Scholar
  48. WHO (World Health Organization) (2001). Depleted Uranium: Sources, Exposure and Health Effects. Department of Protection of the Human Environment. World Health Organization, Geneva, April 2001. World Health Organization.Google Scholar
  49. Yen-Huei Hon; Jian-Yih Wang and Yung-Ning Pan. (2003). Composition/phase structure and properties of Titanium-Niobium alloys. Materials Transactions, 44(11), 2384–2390.CrossRefGoogle Scholar
  50. Zahr, J. H. (1999). Biostatistic Analysis (4ª ed.). New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • K. Moore Dias da Cunha
    • 1
  • K. C. Dalia Pereira
    • 2
  • J. R. D. Guimarães
    • 2
  • C. Lima
    • 3
  • J. E. C. Nascimento
    • 3
  • R. Lima
    • 4
  • A. A. Hecht
    • 1
  • J. C. B. Fiel
    • 5
  1. 1.Department of Nuclear EngineeringThe University of New MexicoAlbuquerqueUSA
  2. 2.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Dept. de FísicaPontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)Rio de JaneiroBrazil
  4. 4.Instituto de Energia Nuclear, IEN/CNENRio de JaneiroBrazil
  5. 5.Department of Nuclear EngineeringInstituto Militar de Engenharia, IMERio de JaneiroBrazil

Personalised recommendations