Environmental Geochemistry and Health

, Volume 39, Issue 3, pp 635–647 | Cite as

Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil

Original Paper


Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying–wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.


Biochar Drying and wetting CO2 N2



Financial support for this work was given by International Scientific and Technological Cooperation and Exchange Projects (2015DFG92450), 973 Program (No. 2013CB956702), the Chinese Academy of Sciences (S&T programs assisting Xinjiang), the International Scientific and Technological Cooperation Project of Guizhou Province (Grant Number G [2012]7050), “The Dawn of West China” Talent Training Program of the Chinese Academy of Sciences (Grant Number [2012]179) and the State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (Grant Number SKLEG2014912).


  1. Ameloot, N., Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., et al. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology & Biochemistry, 57(3), 401–410.CrossRefGoogle Scholar
  2. Asai, H., Samson, B., Stephan, H., Songyikhangsuthor, K., Homma, K., Kiyono, Y., et al. (2009). Biochar amendment techniques for upland rice production in Northern Laos1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(Suppl. 1–2), 81–84.CrossRefGoogle Scholar
  3. Blum, S. C., Lehmann, J., Solomon, D., Caires, E. F., & Alleoni, L. R. F. (2013). Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200–201(6), 156–164.CrossRefGoogle Scholar
  4. Bollmann, A., & Conrad, R. (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4(4), 387–396.CrossRefGoogle Scholar
  5. Bouwman, A. (1996). Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46(1), 53–70.CrossRefGoogle Scholar
  6. Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1), 7–16.CrossRefGoogle Scholar
  7. Bruun, E. W., Muller-Stover, D., Ambus, P., & Hauggaard-Nielsen, H. (2011). Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science, 62(4), 581–589.CrossRefGoogle Scholar
  8. Carter, M. R., & Gregorich, E. G. (2006). Soil sampling and methods of analysis. Boca Raton: CRC Press.Google Scholar
  9. Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2013). Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports, 3(7446), 542.Google Scholar
  10. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444.CrossRefGoogle Scholar
  11. Chowdhury, N., Yan, N., Islam, M. N., & Marschner, P. (2011). The extent of drying influences the flush of respiration after rewetting in non-saline and saline soils. Soil Biology & Biochemistry, 43(11), 2265–2272.CrossRefGoogle Scholar
  12. Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O’Callaghan, M., Sherlock, R. R., et al. (2010). Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America Journal, 74(3), 852–860.CrossRefGoogle Scholar
  13. Dalal, R. C., Wang, W. J., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Australian Journal of Soil Research, 41(2), 165–195.CrossRefGoogle Scholar
  14. Delwiche, C. C. (1981). Denitrification, nitrification and atmospheric nitrous oxide. New York: Wiley.Google Scholar
  15. Denef, K., Six, J., Bossuyt, H., Frey, S. D., Elliott, E. T., Merckx, R., et al. (2001). Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology & Biochemistry, 33(12), 1599–1611.CrossRefGoogle Scholar
  16. Fierer, N., Schimel, J., & Holden, P. (2003). Influence of drying–rewetting frequency on soil bacterial community structure. Microbial Ecology, 45(1), 63–71.CrossRefGoogle Scholar
  17. Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In M. O. Andreae & D. S. Schimel (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere (Vol. 47, pp. 7–21). New York: Wiley.Google Scholar
  18. Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31(6), 426–432.CrossRefGoogle Scholar
  19. Franzluebbers, K., Weaver, R., Juo, A., & Franzluebbers, A. (1994). Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and in repeatedly dried and wetted soil. Soil Biology & Biochemistry, 26(10), 1379–1387.CrossRefGoogle Scholar
  20. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biology and Fertility of Soils, 35(4), 219–230.CrossRefGoogle Scholar
  21. Halverson, L. J., Jones, T. M., & Firestone, M. K. (2000). Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Science Society of America Journal, 64(5), 1630–1637.CrossRefGoogle Scholar
  22. Harris, R. (1981). Effect of water potential on microbial growth and activity. In J. F. Elliott, R. I. Papendick, & R. E. Wildung (Eds.), Water potential relations in soil microbiology (pp. 23–95). Madison: Soil Science Society of America.Google Scholar
  23. Jenkinson, D. S., Brookes, P. C., & Powlson, D. S. (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36(1), 5–7.CrossRefGoogle Scholar
  24. Jones, B. E. H., Haynes, R. J., & Phillips, I. R. (2010). Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. Journal of Environmental Management, 91(11), 2281–2288.CrossRefGoogle Scholar
  25. Jones, D., Murphy, D., Khalid, M., Ahmad, W., Edwards-Jones, G., & DeLuca, T. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology & Biochemistry, 43(8), 1723–1731.CrossRefGoogle Scholar
  26. Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H.-W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 345(1), 195–210.CrossRefGoogle Scholar
  27. Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science and Technology, 44(16), 6189–6195.CrossRefGoogle Scholar
  28. Keeney, D. R. & Nelson, D. (1982). Nitrogen - inorganic forms. in: Methods of soil analysis. Part 2. Chemical and microbiological properties, (Eds.) A.L. Page, R.H. Miller, D.R. Keeney, SSSA. Madison, pp. 643–698.Google Scholar
  29. Kieft, T. L. (1987). Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology & Biochemistry, 19(2), 119–126.CrossRefGoogle Scholar
  30. Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison: American Society of Agronomy Inc.Google Scholar
  31. Knoblauch, C., Maarifat, A. A., Pfeiffer, E. M., & Haefele, S. M. (2011). Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology & Biochemistry, 43(9), 1768–1778.CrossRefGoogle Scholar
  32. Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 395–419.CrossRefGoogle Scholar
  33. Lehmann, J., Nguyen, B. T., Kinyangi, J., Smernik, R., Riha, S. J., & Engelhard, M. H. (2009). Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 92(1–2), 163–176.Google Scholar
  34. Liu, X. J., Mosier, A. R., Halvorson, A. D., & Zhang, F. S. (2006). The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil, 280(1–2), 177–188.CrossRefGoogle Scholar
  35. Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., & Wu, W. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11(6), 930–939.CrossRefGoogle Scholar
  36. Lv, J., Liu, X., Liu, H., Wang, X., Li, K., Tian, C., et al. (2014). Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutrient Cycling in Agroecosystems, 98(1), 15–26.CrossRefGoogle Scholar
  37. Mavi, M. S., Marschner, P., Chittleborough, D. J., Cox, J. W., & Sanderman, J. (2012). Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology & Biochemistry, 45, 8–13.CrossRefGoogle Scholar
  38. Miller, A. E., Schimel, J. P., Meixner, T., Sickman, J. O., & Melack, J. M. (2005). Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology & Biochemistry, 37(12), 2195–2204.CrossRefGoogle Scholar
  39. Mosier, A., Halvorson, A., Peterson, G., Robertson, G., & Sherrod, L. (2005). Measurement of net global warming potential in three agroecosystems. Nutrient Cycling in Agroecosystems, 72(1), 67–76.CrossRefGoogle Scholar
  40. Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., & Van Cleemput, O. (1998). Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 52(2–3), 225–248.CrossRefGoogle Scholar
  41. Nocentini, C., Guenet, B., Di Mattia, E., Certini, G., Bardoux, G., & Rumpel, C. (2010). Charcoal mineralisation potential of microbial inocula from burned and unburned forest soil with and without substrate addition. Soil Biology & Biochemistry, 42(9), 1472–1478.CrossRefGoogle Scholar
  42. Olsen, S., Cole, C., & Watanabe, F. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: USDA.Google Scholar
  43. Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Berlin: Springer.Google Scholar
  44. Parr, J., Gardner, W. R., & Elliot, L. (1981). Water potential relations in soil microbiology. In Proceedings of a symposium, SSSA special publication, Madison.Google Scholar
  45. Pietikainen, J., Kiikkila, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242.CrossRefGoogle Scholar
  46. Pulleman, M., & Tietema, A. (1999). Microbial C and N transformations during drying and rewetting of coniferous forest floor material. Soil Biology & Biochemistry, 31(2), 275–285.CrossRefGoogle Scholar
  47. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271–284.CrossRefGoogle Scholar
  48. Samonin, V. V., & Elikova, E. E. (2004). A study of the adsorption of bacterial cells on porous materials. Microbiology, 73(6), 696–701.CrossRefGoogle Scholar
  49. Scheer, C., Grace, P. R., Rowlings, D. W., Kimber, S., & Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345(1–2), 47–58.CrossRefGoogle Scholar
  50. Schimel, J. P., Wetterstedt, J. M., Holden, P. A., & Trumbore, S. E. (2011). Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biology & Biochemistry, 43(5), 1101–1103.CrossRefGoogle Scholar
  51. Singla, A., Dubey, S. K., Singh, A., & Inubushi, K. (2014a). Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agriculture, Ecosystems & Environment, 197(197), 278–287.CrossRefGoogle Scholar
  52. Singla, A., Iwasa, H., & Inubushi, K. (2014b). Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). Biology and Fertility of Soils, 50(8), 1201–1209.CrossRefGoogle Scholar
  53. Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345–2347.CrossRefGoogle Scholar
  54. Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581.CrossRefGoogle Scholar
  55. Stark, J. M., & Firestone, M. K. (1995). Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61(1), 218–221.Google Scholar
  56. Trenberth, K. E., & Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14(16), 3433–3443.CrossRefGoogle Scholar
  57. Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A. & Chan, K. Y. (2009). Biochar and emissions of non-CO2 greenhouse gases from soil. In Biochar for environmental management: Science and technology (pp. 227–249). London: Earthscan.Google Scholar
  58. Vance, E., Brookes, P., & Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19(6), 703–707.CrossRefGoogle Scholar
  59. Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.CrossRefGoogle Scholar
  60. Wang, J., Zhang, M., Xiong, Z., Liu, P., & Pan, G. (2011). Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils, 47(8), 887–896.CrossRefGoogle Scholar
  61. Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil—Concepts and mechanisms. Plant and Soil, 300(1), 9–20.CrossRefGoogle Scholar
  62. Xiang, S.-R., Doyle, A., Holden, P. A., & Schimel, J. P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry, 40(9), 2281–2289.CrossRefGoogle Scholar
  63. Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53(2), 181–188.CrossRefGoogle Scholar
  64. Zhang, A. F., Liu, Y. M., Pan, G. X., Hussain, Q., Li, L. Q., Zheng, J. W., et al. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275.CrossRefGoogle Scholar
  65. Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science and Technology, 44(4), 1295–1301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.Chengdu Hydrogeological and Engineering Geological TeamChengduChina
  3. 3.Landcare ResearchPalmerston NorthNew Zealand
  4. 4.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations