Skip to main content

Advertisement

Log in

Inhibition of pyrite oxidation by surface coating: a long-term field study

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe2+, which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5–6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe2+ and SO4 2− release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belzile, N., Maki, S., Chen, Y. W., & Goldsack, D. (1997). Inhibition of pyrite oxidation by surface treatment. Science of Total Environment, 196, 177–186.

    Article  CAS  Google Scholar 

  • Bessho, M., Wajima, T., Ida, T., & Nishiyama, T. (2011). Experimental study on prevention of acid mine drainage by silica coating of pyrite waste rocks with amorphous silica solution. Environmental Earth Sciences, 64, 311–318.

    Article  CAS  Google Scholar 

  • Cai, M. F., Dang, Z., Chen, Y. W., & Belzile, N. (2005). The passivation of pyrrhotite by surface coating. Chemosphere, 61, 659–667.

    Article  CAS  Google Scholar 

  • Carlson, L., Bigham, J. M., Schwertmann, U., Kyek, A., & Wagner, F. (2002). Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science and Technology, 36, 1712–1719.

    Article  CAS  Google Scholar 

  • Casiot, C., Morin, G., Juillot, F., Bruneel, O., Personné, J. C., Leblanc, M., et al. (2003). Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulés creek, France). Water Research, 37, 2929–2936.

    Article  CAS  Google Scholar 

  • Chen, Y. W., Li, Y., Cai, M. F., Belzile, N., & Dang, Z. (2006). Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Minerals Engineering, 19, 19–27.

    Article  CAS  Google Scholar 

  • Craig, J. R., & Vokes, F. M. (1993). The metamorphism of pyrite and pyritic ores: An overview. Mineralogical Magazine, 57, 3–18.

    Article  CAS  Google Scholar 

  • Diao, Z., Shi, T., Wang, S., Huang, X., Zhang, T., Tang, Y., et al. (2013). Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Research, 47, 4391–4402.

    Article  CAS  Google Scholar 

  • Evangelou, V. P. (1995). Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coating. Journal of Environmental Quality, 24, 535–542.

    Article  CAS  Google Scholar 

  • Evangelou, V. P. (2001). Pyrite microencapsulation technologies: Principles and potential field application. Ecological Engineering, 17, 165–178.

    Article  Google Scholar 

  • Fytas, K., & Evangelou, B. (1998). Phosphate coating on pyrite to prevent acid mine drainage. International Journal of Surface Mining, Reclamation, and Environment, 12, 101–104.

    Article  CAS  Google Scholar 

  • Gazea, B., Adam, K., & Kontopoulos, A. (1996). A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 9, 23–42.

    Article  CAS  Google Scholar 

  • Jha, R. K. T., Satur, J., Hiroyoshi, N., Ito, M., & Tsunekawa, M. (2012). Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol. Mineral Processing and Extractive Metallurgy Review, 33, 89–98.

    Article  Google Scholar 

  • Ji, M. K., Gee, E. D., Yun, H. S., Lee, W. R., Park, Y. T., Khan, M. A., et al. (2012). Inhibition of sulfide mineral oxidation by surface coating agents: Batch and field studies. Journal of Hazardous Materials, 229230, 298–306.

    Article  Google Scholar 

  • Jiang, C. L., Wang, X. H., & Parekh, B. K. (2000). Effect of sodium oleate on inhibiting pyrite oxidation. International Journal of Mineral Processing, 58, 305–318.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review. Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Kargbo, D. M., Atallah, G., & Chatterjee, S. (2004). Inhibition of pyrite oxidation by a phospholipid in the presence of silicate. Environmental Science and Technology, 38, 3432–3441.

    Article  CAS  Google Scholar 

  • Kargbo, D. M., & Chatterjee, S. (2005). Stability of silicate coatings on pyrite surfaces in a low pH environment. Journal of Environmental Engineering, 131, 1340–1349.

    Article  CAS  Google Scholar 

  • Lalvani, S. B., DeNeve, B. A., & Weston, A. (1990). Passivation of pyrite due to surface treatment. Fuel, 69, 1567–1569.

    Article  CAS  Google Scholar 

  • Lalvani, S. B., & Shami, M. (1987). Passivation of pyrite oxidation with metal cations. Journal of Materials Science, 22, 3503–3507.

    Article  CAS  Google Scholar 

  • Lawrence, R. W., Jaffe, S., & Broughton, L. M. (1988). In-house development of the net acid production test method. Ottawa: Coastech Research Inc.

    Google Scholar 

  • Lawrence, R. W., & Wang, Y. (1997). Determination of neutralization potential in the prediction of acid rock drainage. In Proceedings of the fourth international conference on acid rock drainage (pp. 15–30). Vancouver, BC.

  • Lee, C. H., Lee, M. S., & Park, B. S. (1980). Geological map of Korea: Miweon sheet (1:50,000). Seoul: Korea Institute of Geoscience and Mineral Resource.

    Google Scholar 

  • Nyavor, K., & Egiebor, N. O. (1995). Control of pyrite oxidation by phosphate coating. Science of the Total Environment, 162, 225–237.

    Article  CAS  Google Scholar 

  • Shamshuddin, J., Muhrizal, S., Fauziah, I., & Van Ranst, E. (2004). A laboratory study of pyrite oxidation in acid sulfate soils. Communications in Soil Science and Plant Analysis, 35, 117–129.

    Article  CAS  Google Scholar 

  • Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167, 1121–1123.

    Article  CAS  Google Scholar 

  • Stewart, W. A., Miller, S. D., & Smart, R. (2006). Advances in acid rock drainage (ARD) characterization of mine wastes. In Proceedings of the 7th international conference on acid rock drainage (pp. 2098–2119). St. Louis, Missouri.

  • Van den Eynde, V. C., Paradelo, R., & Monterroso, C. (2009). Passivation techniques to prevent corrosion of iron sulphides in roofing slates. Corrosion Science, 51, 2387–2392.

    Article  Google Scholar 

  • Zeng, S., Li, J., Schumann, R., & Smart, R. (2013). Effect of pH and dissolved silicate on the formation of surface passivation layers for reducing pyrite oxidation. Computational Water, Energy, and Environmental Engineering, 2, 50–55.

    Article  Google Scholar 

  • Zhang, X., Borda, M. J., Schoonen, M. A. A., & Strongin, D. R. (2003). Pyrite oxidation inhibition by a cross-linked lipid coating. Geochemical Transactions, 4, 8–11.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thankfully acknowledge Mine Reclamation Corporation for their support for this entire project. This work was also supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. NRF-2013R1A2A2A07069183)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Joon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CU., Jeon, BH., Park, SS. et al. Inhibition of pyrite oxidation by surface coating: a long-term field study. Environ Geochem Health 38, 1137–1146 (2016). https://doi.org/10.1007/s10653-015-9778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9778-9

Keywords

Navigation