Advertisement

Environmental Geochemistry and Health

, Volume 38, Issue 2, pp 339–351 | Cite as

Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity

  • Haiyan Yu
  • Su Liu
  • Mei Li
  • Bing WuEmail author
Review Paper

Abstract

Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research.

Keywords

Arsenic Diet Element Toxicity Metabolism Bioaccessibility 

Notes

Acknowledgments

This work was supported by Natural Science Foundation of Jiangsu Province (BK20131270), Foundation of State Key Laboratory of Pollution Control and Resource Reuse, and Science Foundation of Nanjing University.

References

  1. Adair, B. M., Moore, T., Conklin, S. D., Creed, J. T., Wolf, D. C., & Thomas, D. J. (2007). Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats. Toxicology and Applied Pharmacology, 222(2), 235–242.CrossRefGoogle Scholar
  2. Ahmad, S., Kitchin, K. T., & Cullen, W. R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Archives of Biochemistry and Biophysics, 382(2), 195–202.CrossRefGoogle Scholar
  3. Alava, P., Du Laing, G., Odhiambo, M., Verliefde, A., Tack, F., & Van de Wiele, T. R. (2013a). Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering., 48(6), 656–665.CrossRefGoogle Scholar
  4. Alava, P., Tack, F., Du Laing, G., & Van de Wiele, T. (2013b). Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota. Journal of Hazardous Materials, 262, 1237–1244.CrossRefGoogle Scholar
  5. Alava, P., Tack, F., Laing, G. D., & de Wiele, T. V. (2012). HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota. Biomedical Chromatography, 26(4), 524–533.CrossRefGoogle Scholar
  6. Altuve, A., Silchenko, S., Lee, K. H., Kuczera, K., Terzyan, S., Zhang, X. J., et al. (2001). Probing the differences between rat liver outer mitochondrial membrane cytochrome b(5) and microsomal cytochromes b(5). Biochemistry, 40(32), 9469–9483.CrossRefGoogle Scholar
  7. Antonio Garcia, M. T., Herrera Duenas, A., & Pineda Pampliega, J. (2013). Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: The protective role of antioxidants. Experimental and Toxicologic Pathology, 65(5), 609–614.CrossRefGoogle Scholar
  8. Arnold, L. L., Eldan, M., Nyska, A., van Gemert, M., & Cohen, S. M. (2006). Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology, 223(1–2), 82–100.CrossRefGoogle Scholar
  9. Azam, S., Hadi, N., Khan, N. U., & Hadi, S. M. (2004). Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicology in Vitro, 18(5), 555–561.CrossRefGoogle Scholar
  10. Beak, D. G., Basta, N. T., Scheckel, K. G., & Traina, S. J. (2006). Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40(4), 1364–1370.CrossRefGoogle Scholar
  11. Calatayud, M., Gimeno-Alcaniz, J. V., Velez, D., & Devesa, V. (2014). Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicology Letters, 224(1), 40–46.CrossRefGoogle Scholar
  12. Chandrasekaran, V. R. M., Muthaiyan, I., Huang, P.-C., & Liu, M.-Y. (2010). Using iron precipitants to remove arsenic from water: Is it safe? Water Research, 44(19), 5823–5827.CrossRefGoogle Scholar
  13. Chen, T.-H., Gross, J. A., & Karasov, W. H. (2009). Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): Bioaccumulation and reduced swimming performance. Ecotoxicology, 18(5), 587–593.CrossRefGoogle Scholar
  14. Chung, C.-J., Pu, Y.-S., Chen, Y.-T., Su, C.-T., Wu, C.-C., Shiue, H.-S., et al. (2011). Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma. Science of the Total Environment, 409(6), 1039–1045.CrossRefGoogle Scholar
  15. Das, S., Jean, J. S., & Kar, S. (2013). Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicology and Environmental Safety., 92, 252–257.CrossRefGoogle Scholar
  16. Dash, J. R., Datta, B. K., Sarkar, S., & Mandal, T. K. (2013). Chronic arsenicosis in cattle: Possible mitigation with Zn and Se. Ecotoxicology and Environmental Safety, 92, 119–122.CrossRefGoogle Scholar
  17. Deb, G., Thakur, V. S., & Gupta, S. (2013). Multifaceted role of EZH2 in breast and prostate tumorigenesis: Epigenetics and beyond. Epigenetics, 8(5), 464–476.CrossRefGoogle Scholar
  18. Depner, C. M., Torres-Gonzalez, M., Tripathy, S., Milne, G., & Jump, D. B. (2012). Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr(−/−) mice. Journal of Nutrition, 142(8), 1495–1503.CrossRefGoogle Scholar
  19. Dilda, P. J., & Hogg, P. J. (2007). Arsenical-based cancer drugs. Cancer Treatment Reviews, 33(6), 542–564.CrossRefGoogle Scholar
  20. Dopp, E., Hartmann, L. M., von Recklinghausen, U., Florea, A. M., Rabieh, S., Zimmermann, U., et al. (2005). Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto-/genotoxicity in fibroblasts and hepatoma cells. Toxicological Sciences, 87(1), 46–56.CrossRefGoogle Scholar
  21. Dopp, E., von Recklinghausen, U., Hartmann, L. M., Stueckradt, I., Pollok, I., Rabieh, S., et al. (2008). Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes. Drug Metabolism and Disposition, 36(5), 971–979.CrossRefGoogle Scholar
  22. Duramad, P., Tager, I. B., & Holland, N. T. (2007). Cytokines and other immunological biomarkers in children’s environmental health studies. Toxicology Letters, 172(1–2), 48–59.CrossRefGoogle Scholar
  23. Dutta, M., Ghosh, D., Ghosh, A. K., Bose, G., Chattopadhyay, A., Rudra, S., et al. (2014). High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food and Chemical Toxicolog, 66, 262–277.CrossRefGoogle Scholar
  24. Flora, S. J. S. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51(2), 257–281.CrossRefGoogle Scholar
  25. Flora, S. J. S., Bhadauria, S., Kannan, G. M., & Singh, N. (2007). Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. Journal of Environmental Biology, 28(2), 333–347.Google Scholar
  26. Gamble, M. V., Liu, X., Slavkovich, V., Pilsner, J. R., Ilievski, V., Factor-Litvak, P., et al. (2007). Folic acid supplementation lowers blood arsenic. American Journal of Clinical Nutrition, 86(4),1202–1209.Google Scholar
  27. Ghosh, A., Majumder, S., Awal, M. A., & Rao, D. R. (2013). Arsenic exposure to dairy cows in Bangladesh. Archives of Environmental Contamination and Toxicology, 64(1), 151–159.CrossRefGoogle Scholar
  28. Gosse, J. A., Taylor, V. F., Jackson, B. P., Hamilton, J. W., & Bodwell, J. E. (2014). Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations. Journal of Applied Toxicology, 34(5), 498–505.CrossRefGoogle Scholar
  29. Guha Mazumder, D., & Dasgupta, U. B. (2011). Chronic arsenic toxicity: Studies in West Bengal, India. The Kaohsiung Journal of Medical Sciences, 27(9), 360–370.CrossRefGoogle Scholar
  30. Hansen, H. R., Raab, A., Francesconi, K. A., & Feldmann, J. (2003). Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environmental Science and Technology, 37(5), 845–851.CrossRefGoogle Scholar
  31. Hayakawa, T., Kobayashi, Y., Cui, X., & Hirano, S. (2005). A new metabolic pathway of arsenite: Arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology, 79(4), 183–191.CrossRefGoogle Scholar
  32. Herrera, A., Pineda, J., & Teresa Antonio, M. (2013). Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environmental Toxicology and Pharmacology, 36(1), 73–79.CrossRefGoogle Scholar
  33. Hou, Y., Xue, P., Woods, C. G., Wang, X., Fu, J., Yarborough, K., et al. (2013). Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environmental Health Perspectives, 121(2), 237–243.Google Scholar
  34. Hughes, M. F. (2006). Biomarkers of exposure: A case study with inorganic arsenic. Environmental Health Perspectives, 114(11), 1790–1796.Google Scholar
  35. Hughes, M. F., Devesa, V., Adair, B. M., Conklin, S. D., Creed, J. T., Styblo, M., et al. (2008). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 227(1), 26–35.CrossRefGoogle Scholar
  36. Hughes, M. F., Devesa, V., Adair, B. M., Styblo, M., Kenyon, E. M., & Thomas, D. J. (2005). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 208(2), 186–197.CrossRefGoogle Scholar
  37. Islam, L. N., Nabi, A. H. M. N., Rahman, M. M., & Zahid, M. S. H. (2007). Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering., 42(12), 1807–1814.CrossRefGoogle Scholar
  38. Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., et al. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95–107.Google Scholar
  39. Kasperczyk, S., Dobrakowski, M., Kasperczyk, A., Zalejska-Fiolka, J., Pawlas, N., Kapka-Skrzypczak, L., & Birkner, E. (2014). Effect of treatment with N-acetylcysteine on non-enzymatic antioxidant reserves and lipid peroxidation in workers exposed to lead. Annals of agricultural and environmental medicine : AAEM., 21(2), 272–277.CrossRefGoogle Scholar
  40. Kim, E. J., Yoo, J. C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.CrossRefGoogle Scholar
  41. Kitchin, K. T., & Conolly, R. (2010). Arsenic-induced carcinogenesis-oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chemical Research in Toxicology, 23(2), 327–335.CrossRefGoogle Scholar
  42. Koch, I., Dee, J., House, K., Sui, J., Zhang, J., McKnight-Whitford, A., & Reimer, K. J. (2013). Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Science of the Total Environment, 449, 1–8.CrossRefGoogle Scholar
  43. Kumar, A., Malhotra, A., Nair, P., Garg, M. L., & Dhawan, D. K. (2010). Protective role of zinc in ameliorating arsenic-induced oxidative stress and histological changes in rat liver. Journal of Environmental Pathology, Toxicology and Oncology, 29(2), 91–100.CrossRefGoogle Scholar
  44. Li, L., Qiu, P., Chen, B., Lu, Y., Wu, K., Thakur, C., et al. (2014). Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells. Toxicology and Applied Pharmacology, 276(3), 165–170.CrossRefGoogle Scholar
  45. Liu, S. X., Athar, M., Lippai, I., Waldren, C., & Hei, T. K. (2001). Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1643–1648.CrossRefGoogle Scholar
  46. Liu, S., Guo, X., Zhang, X., Cui, Y., Zhang, Y., & Wu, B. (2013). Impact of iron precipitant on toxicity of arsenic in water: A combined in vivo and in vitro study. Environmental Science and Technology, 47(7), 3432–3438.Google Scholar
  47. Majumdar, S., Maiti, A., Karmakar, S., Das, A. S., Mukherjee, S., Das, D., & Mitra, C. (2012). Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic-induced toxicity. Environmental Toxicology, 27(6), 351–363.CrossRefGoogle Scholar
  48. McCarty, K. M., Houseman, E. A., Quamruzzaman, Q., Rahman, M., Mahiuddin, G., Smith, T., et al. (2006). The impact of diet and betel nut use on skin lesions associated with drinking-water arsenic in Pabna, Bangladesh. Environmental Health Perspectives, 114(3), 334–340.CrossRefGoogle Scholar
  49. Modi, M., & Flora, S. J. S. (2007). Combined administration of iron and monoisoamyl-DMSA in the treatment of chronic arsenic intoxication in mice. Cell Biology and Toxicology, 23(6), 429–443.CrossRefGoogle Scholar
  50. Modi, M., Pathak, U., Kalia, K., & Flora, S. J. S. (2005). Arsenic antagonism studies with monolsoamyl DMSA and zinc in male mice. Environmental Toxicology and Pharmacology, 19(1), 131–138.CrossRefGoogle Scholar
  51. Molly, K., Woestyne, M. V., & Verstraete, W. (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254–258.CrossRefGoogle Scholar
  52. Moreda-Pineiro, J., Moreda-Pineiro, A., Romaris-Hortas, V., Moscoso-Perez, C., Lopez-Mahia, P., Muniategui-Lorenzo, S., et al. (2011). In-vivo and in vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. Trac-Trends in Analytical Chemistry, 30(2), 324–345.CrossRefGoogle Scholar
  53. Muthulakshmi, S., & Saravanan, R. (2013). Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Molecular and Cellular Biochemistry, 377(1–2), 23–33.CrossRefGoogle Scholar
  54. Naranmandura, H., Suzuki, N., & Suzuki, K. T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research in Toxicology, 19(8), 1010–1018.CrossRefGoogle Scholar
  55. Pant, N., Kumar, R., Murthy, R. C., & Srivastava, S. P. (2001). Male reproductive effect of arsenic in mice. BioMetals, 14(2), 113–117.CrossRefGoogle Scholar
  56. Patel, H. V., & Kalia, K. (2013). Role of hepatic and pancreatic oxidative stress in arsenic induced diabetic condition in Wistar rats. Journal of Environmental Biology, 34(2), 231–236.Google Scholar
  57. Raihan, S. Z., Chowdhury, A. K. A., Rabbani, G. H., Marni, F., Ali, M. S., Nahar, L., & Sarker, S. D. (2009). Effect of aqueous extracts of black and green teas in arsenic-induced toxicity in rabbits. Phytotherapy Research, 23(11), 1603–1608.CrossRefGoogle Scholar
  58. Ramirez, T., Garcia-Montalvo, V., Wise, C., Cea-Olivares, R., Poirier, L. A., & Herrera, L. A. (2003). S-adenosyl-l-methionine is able to reverse micronucleus formation induced by sodium arsenite and other cytoskeleton disrupting agents in cultured human cells. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis., 528(1–2), 61–74.CrossRefGoogle Scholar
  59. Ramos, O., Carrizales, L., Yanez, L., Mejia, J., Batres, L., Ortiz, D., & Diazbarriga, F. (1995). Arsenic increased lipid-peroxidation in rat-tissues by a mechanism independent of glutathione levels. Environmental Health Perspectives, 103, 85–88.CrossRefGoogle Scholar
  60. Raposo, J., Olazabal, M. A., & Madariaga, J. M. (2006). Complexation and precipitation of arsenate and iron species in sodium perchlorate solutions at 25 degrees C. Journal of Solution Chemistry, 35(1), 79–94.CrossRefGoogle Scholar
  61. Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391–396.CrossRefGoogle Scholar
  62. Reddy, P. S., Rani, G. P., Sainath, S. B., Meena, R., & Supriya, C. (2011). Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. Journal of Trace Elements in Medicine and Biology, 25(4), 247–253.CrossRefGoogle Scholar
  63. Rehman, K., Fu, Y. J., Zhang, Y. F., Wang, Q. Q., Wu, B., Wu, Y., et al. (2014). Trivalent methylated arsenic metabolites induce apoptosis in human myeloid leukemic HL-60 cells through generation of reactive oxygen species. Metallomics., 6(8), 1502–1512.CrossRefGoogle Scholar
  64. Ren, X., McHale, C. M., Skibola, C. F., Smith, A. H., Smith, M. T., & Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environmental Health Perspectives, 119(1), 11–19.CrossRefGoogle Scholar
  65. Rodriguez, R. R., & Basta, N. T. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33(4), 642–649.CrossRefGoogle Scholar
  66. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422–430.CrossRefGoogle Scholar
  67. Salgueiro, M. J., Zubillaga, M., Lysionek, A., Sarabia, M. I., Caro, R., De Paoli, T., et al. (2000). Zinc as an essential micronutrient: A review. Nutrition Research., 20(5), 737–755.CrossRefGoogle Scholar
  68. Singh, N., Kumar, D., Lal, K., Raisuddin, S., & Sahu, A. P. (2010). Adverse health effects due to arsenic exposure: Modification by dietary supplementation of jaggery in mice. Toxicology and Applied Pharmacology, 242(3), 247–255.CrossRefGoogle Scholar
  69. Singh, N., Kumar, D., Raisuddin, S., & Sahu, A. P. (2008). Genotoxic effects of arsenic: Prevention by functional food-jaggery. Cancer Letters, 268(2), 325–330.CrossRefGoogle Scholar
  70. Singh, S., & Rana, S. V. S. (2010). Ascorbic acid improves mitochondrial function in liver of arsenic-treated rat. Toxicology and Industrial Health, 26(5), 265–272.CrossRefGoogle Scholar
  71. Sinha, D., Roy, S., & Roy, M. (2010). Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice. Food and Chemical Toxicology, 48(4), 1032–1039.CrossRefGoogle Scholar
  72. Sinha, D., Roy, M., Siddiqi, M., & Bhattacharya, R. K. (2005). Arsenic-induced micronuclei formation in mammalian cells and its counteraction by tea. Journal of Environmental Pathology, Toxicology and Oncology, 24(1), 45–56.CrossRefGoogle Scholar
  73. Sun, H.-J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.-P., & Ma, L. Q. (2014). Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 69, 148–158.CrossRefGoogle Scholar
  74. Sur-Altiner, D., & Yenice, B. (2000). Effect of black tea on lipid peroxidation in carbon tetrachloride treated male rats. Drug Metabolism and Drug Interactions, 16(2), 123–128.CrossRefGoogle Scholar
  75. Toujaguez, R., Ono, F. B., Martins, V., Cabrera, P. P., Blanco, A. V., Bundschuh, J., & Guilherme, L. R. G. (2013). Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials., 262, 1004–1013.CrossRefGoogle Scholar
  76. Tseng, C. H. (2004). The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicology and Applied Pharmacology, 197(2), 67–83.CrossRefGoogle Scholar
  77. Tseng, C.-H. (2007). Metabolism of inorganic arsenic and non-cancerous health hazards associated with chronic exposure in humans. Journal of Environmental Biology, 28(2), 349–357.Google Scholar
  78. Tseng, C.-H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235(3), 338–350.CrossRefGoogle Scholar
  79. Vahter, M. (2002). Mechanisms of arsenic biotransformation. Toxicology, 181, 211–217.CrossRefGoogle Scholar
  80. Van de Wiele, T., Gallawa, C. M., Kubachka, K. M., Creed, J. T., Basta, N., Dayton, E. A., et al. (2010). Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environmental Health Perspectives, 118(7), 1004–1009.CrossRefGoogle Scholar
  81. Wang, X., Mandal, A. K., Saito, H., Pulliam, J. F., Lee, E. Y., Ke, Z. J., et al. (2012). Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/beta-catenin signaling pathway. Toxicology and Applied Pharmacology, 262(1), 11–21.CrossRefGoogle Scholar
  82. Wang, X., Zhao, H., Shao, Y., Wang, P., Wei, Y., Zhang, W., et al. (2014). Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats. Nutrition Research and Practice., 8(1), 46–53.CrossRefGoogle Scholar
  83. Watanabe, T., Ohta, Y., Mizumura, A., Kobayashi, Y., & Hirano, S. (2011). Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells. Archives of Toxicology, 85(6), 577–588.CrossRefGoogle Scholar
  84. Wu, J., Liu, J., Waalkes, M. P., Cheng, M.-L., Li, L., Li, C.-X., & Yang, Q. (2008). High dietary fat exacerbates arsenic-induced liver fibrosis in mice. Experimental Biology and Medicine., 233(3), 377–384.CrossRefGoogle Scholar
  85. Yan, W., Feng-hong, Z., & Lian-ying, G. U. O. (2009). Effects of exogenous glutathione on arsenic distribution and NO metabolism in brain of female mice exposed to sodium arsenite through drinking water. Journal of Environment and Health., 26(12), 1046–1048.Google Scholar
  86. You, B. R., & Park, W. H. (2012). Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncology Reports, 28(2), 749–757.Google Scholar
  87. Yu, Z. M., Fung, B., Murimboh, J. D., Parker, L., & Dummer, T. J. B. (2014). What is the role of obesity in the aetiology of arsenic-related disease? Environment International, 66, 115–123.CrossRefGoogle Scholar
  88. Zablotska, L. B., Chen, Y., Graziano, J. H., Parvez, F., van Geen, A., Howe, G. R., & Ahsan, H. (2008). Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh. Environmental Health Perspectives, 116(8), 1056–1062.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations