Environmental Geochemistry and Health

, Volume 38, Issue 2, pp 511–521 | Cite as

Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions

  • Adel R. A. Usman
  • Mahtab Ahmad
  • Mohamed El-Mahrouky
  • Abdulrasoul Al-Omran
  • Yong Sik Ok
  • Abdelazeem Sh. Sallam
  • Ahmed H. El-Naggar
  • Mohammad I. Al-Wabel
Original Paper

Abstract

Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg−1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g−1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

Keywords

Engineered biochar Kinetics Sorption capacity Green waste Chemical modification 

Notes

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research, King Saud University, for funding this work through the international research group Project IRG-14-14.

References

  1. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.CrossRefGoogle Scholar
  2. Ahmad, M., Lee, S. S., Oh, S. E., Mohan, D., Moon, D. H., Lee, Y. H., & Ok, Y. S. (2013a). Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research, 20, 8364–8373.CrossRefGoogle Scholar
  3. Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., et al. (2013b). Trichloroethylene adsorption by pine needle biochar produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622.CrossRefGoogle Scholar
  4. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014a). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.CrossRefGoogle Scholar
  5. Ahmad, M., Vithanage, M., Kim, K., Cho, J. S., Lee, Y. H., Joo, Y. K., et al. (2014b). Inhibitory effect of veterinary antibiotics on denitrification in groundwater: A microcosm approach. The Scientific World Journal. ID: 879831. doi:10.1155/2014/879831.
  6. Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus waste. Bioresource Technology, 131, 374–379.CrossRefGoogle Scholar
  7. Aly, A. A., Hasan, Y. N. Y., & Al-Farraj, A. S. (2014). Olive mill wastewater treatment using a simple zeolite-based low-cost method. Journal of Environmental Management, 145, 341–348.CrossRefGoogle Scholar
  8. Bagherifam, F., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W., et al. (2014). Highly selective removal of nitrate and perchlorate by organoclay. Applied Clay Science, 95, 126–132.CrossRefGoogle Scholar
  9. Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere, 58, 1255–1267.CrossRefGoogle Scholar
  10. Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102, 716–723.CrossRefGoogle Scholar
  11. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester: Wiley.Google Scholar
  12. Dogan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, and Soil Pollution, 120, 229–248.CrossRefGoogle Scholar
  13. Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science and technology (pp. 13–32). London: Earthscans.Google Scholar
  14. Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.Google Scholar
  15. Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K., & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174.CrossRefGoogle Scholar
  16. Kassaee, M. Z., Motamedi, E., Mikhak, A., & Rahnemaie, R. (2011). Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chemical Engineering Journal, 166, 490–495.CrossRefGoogle Scholar
  17. Keshavarzi, B., Moore, F., Najmeddin, A., Rahmani, F., & Malekzadeh, A. (2012). Quality of drinking water and high incidence rate of esophageal cancer in Golestan province of Iran: A probable link. Environmental Geochemistry and Health, 34, 15–26.CrossRefGoogle Scholar
  18. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., et al. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences,. doi:10.1016/j.ajps.2014.05.005.Google Scholar
  19. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science and technology (pp. 1–12). London: Earthscans.Google Scholar
  20. Liu, B., Ray, A. S., & Thomas, P. S. (2007). Strength development in autoclaved aluminosilicate rich industrial waste-cement systems containing reactive magnesia. Journal of Australian Ceramics Society, 43, 82–87.Google Scholar
  21. Liu, C. W., Lin, C. N., Jang, C. S., Ling, M. P., & Tsai, J. W. (2011). Assessing nitrate contamination and its potential health risk of Kinmen residents. Environmental Geochemistry and Health, 33, 503–514.CrossRefGoogle Scholar
  22. Loni, O. A., Zaidi, F. K., Alhumimidi, M. S., Alharbi, O. A., Hussein, M. T., Dafalla, M., et al. (2014). Evaluation of groundwater quality in an evaporation dominant arid environment: A case study from Al Asyah area in Saudi Arabia. Arabian Journal of Geosciences,. doi:10.1007/s12517-014-1623-4.Google Scholar
  23. Ma, Y., Liu, W. J., Zhang, N., Li, Y. S., Jiang, H., & Sheng, G. P. (2014). Polyethylene amine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169, 403–408.CrossRefGoogle Scholar
  24. Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60, 121–131.CrossRefGoogle Scholar
  25. Mayer, Z. A., Eltom, Y., Stennett, D., Schroder, E., Apfelbacher, A., & Hornung, A. (2014). Characterization of engineered biochar for soil management. Environmental Progress and Sustainable Energy, 33, 490–496.CrossRefGoogle Scholar
  26. Mohan, D., Kumar, H., Sarswat, A., Franco, M. A., & Pitmann, C. U, Jr. (2014). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236, 513–528.CrossRefGoogle Scholar
  27. Öztürk, N., & Bektas, T. E. (2004). Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112, 155–162.CrossRefGoogle Scholar
  28. Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science, 152, 2–13.CrossRefGoogle Scholar
  29. Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308.CrossRefGoogle Scholar
  30. Rodríguez-Marotoet, J. M., García-Herruzo, F., García-Rubio, A., Gomez-Lahoz, C., & Vareda-Alonso, C. (2009). Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74, 804–809.CrossRefGoogle Scholar
  31. Shackley, S., Hammond, J., Gaunt, J., & Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335–356.CrossRefGoogle Scholar
  32. Sowmya, A., & Meenakshi, S. (2014). Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Desalination and Water Treatment, 52, 2583–2593.CrossRefGoogle Scholar
  33. Usman, A. R. A., Sallam, A. S., Al-Omran, A., El-Naggar, A. H., Alenazi, K. K. H., Nadeem, M., & Al-Wabel, M. I. (2013). Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science and Technology, 31, 625–640.CrossRefGoogle Scholar
  34. Vithanage, M., Rajapaksha, A. U., Zhang, M., Thiele-Bruhn, S., Lee, S. S., & Ok, Y. S. (2014). Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research,. doi:10.1007/s11356-014-3434-2.Google Scholar
  35. Wang, T., Lin, J., Xhen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413–419.CrossRefGoogle Scholar
  36. WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva: World Health Organization.Google Scholar
  37. Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., & Cao, X. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190, 501–507.CrossRefGoogle Scholar
  38. Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Adel R. A. Usman
    • 1
    • 2
  • Mahtab Ahmad
    • 1
  • Mohamed El-Mahrouky
    • 1
  • Abdulrasoul Al-Omran
    • 1
  • Yong Sik Ok
    • 3
  • Abdelazeem Sh. Sallam
    • 1
  • Ahmed H. El-Naggar
    • 1
    • 4
  • Mohammad I. Al-Wabel
    • 1
  1. 1.Soil Sciences Department, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Soils and Water, Faculty of AgricultureAssiut UniversityAssiutEgypt
  3. 3.Korea Biochar Research CenterKangwon National UniversityChuncheonKorea
  4. 4.Department of Soil Science, Faculty of AgricultureAin Shams UniversityCairoEgypt

Personalised recommendations