Skip to main content

Advertisement

Log in

Formation of dimethyldithioarsinic acid in a simulated landfill leachate in relation to hydrosulfide concentration

  • Original paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Dimethyldithioarsinic acid (DMDTAV), present in such intense sources as municipal landfill leachate, has drawn a great deal of attention due to its abundant occurrence and different aspect of toxicity. The hydrosulfide (HS) concentration in leachate was studied as a major variable affecting the formation of DMDTAV. To this end, the HPLC–ICPMS system equipped with the reversed-phase C18 column was used to determine DMDTAV. Simulated landfill leachates (SLLs) were prepared to cover a mature landfill condition with the addition of sodium sulfate and sulfide at varying concentrations in the presence of dimethylarsinic acid (DMAV). The concentration of sodium sulfide added in the SLLs generally exhibited a strong positive correlation with the concentration of DMDTAV. As such, the formation of DMDTAV in the SLLs is demonstrated to be controlled by the interactive relationship between DMAV and the HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An, J., Kim, K.-H., Kim, J.-A., Jung, H., Yoon, H.-O., & Seo, J. (2013). A simplified analysis of dimethylarsinic acid by wavelength dispersive X-ray fluorescence spectrometry combined with a strong cation exchange disk. Journal of Hazardous Materials, 260, 24–31.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Ranville, J. F., & Wildeman, T. R. (2002). Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environmental Science and Technology, 36(10), 2213–2218.

    Article  CAS  Google Scholar 

  • Chen, Z., Akter, K. F., Rahuman, M. M., & Naidu, R. (2008). The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases. Microchemical Journal, 89(1), 20–28.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16(7–8), 659–718.

    Article  CAS  Google Scholar 

  • Claret, F., Tournassat, C., Crouzet, C., Caucher, E. C., Schafer, T., Braibant, G., et al. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 31(9–10), 2036–2045.

    Article  CAS  Google Scholar 

  • Fricke, M. W., Creed, P. A., Parks, A. N., Shoemaker, J. A., Schwegel, C. A., & Creed, J. T. (2004). Extraction and detection of a new arsine sulfide containing arsenosugar in molluscs by IC-ICP-MS and IC-ESI-MS/MS. Journal of Analytical Atomic Spectrometry, 19, 1454–1459.

    Article  CAS  Google Scholar 

  • Fricke, M. W., Zeller, M., Sun, H., Lai, V. W. M., Cullen, W. R., Shoemaker, J. A., et al. (2005). Chromatographic separation and identification of products from the reaction of dimethylarsinic acid with hydrogen sulfide. Chemical Research in Toxicology, 18(12), 1821–1829.

    Article  CAS  Google Scholar 

  • Ghosh, A., Mukiibi, M., & Ela, W. (2004). TCLP underestimates leaching of arsenic from solid residuals under landfill conditions. Environmental Science and Technology, 38(17), 4677–4682.

    Article  CAS  Google Scholar 

  • Ghosh, A., Mukiibi, M., Sáez, A. E., & Ela, W. P. (2006). Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions. Environmental Science and Technology, 40(19), 6070–6075.

    Article  CAS  Google Scholar 

  • Gong, Z., Lu, X., Ma, M., Watt, C., & Le, X. C. (2002). Arsenic speciation analysis. Talanta, 58(1), 77–96.

    Article  CAS  Google Scholar 

  • Grotti, M., Lagomarsino, C., Goessler, W., & Francesconi, K. A. (2000). Arsenic speciation in marine organisms from Antarctic coastal environments. Environmental Chemistry, 7, 207–214.

    Article  CAS  Google Scholar 

  • Guerine, T., Molenat, N., Astruc, A., & Pinel, R. (2000). Arsenic speciation in some environmental samples: a comparative study of HG–GC–QFAAS and HPLC–ICP–MS methods. Applied Organometallic Chemistry, 14(8), 401–410.

    Article  Google Scholar 

  • ISO 11885 (2007). Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). International Organization for Standardization (ISO).

  • Ito, A., Takachi, T., Kitada, K., Aizawa, J., & Umita, T. (2001). Characteristics of arsenic elution from sewage sludge. Applied Organometallic Chemistry, 15(4), 266–270.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.

    Article  CAS  Google Scholar 

  • Khan, B. I., Jambeck, J., Solo-Gabriele, H. M., Townsend, T. G., & Cai, Y. (2006). Release of arsenic to the environment from CCA-treated wood. 2. Leaching and speciation during disposal. Environmental Science and Technology, 40(3), 994–999.

    Article  CAS  Google Scholar 

  • Komorowicz, I., & Baralkiewicz, D. (2011). Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry-last decade review. Talanta, 84(2), 247–261.

    Article  CAS  Google Scholar 

  • Li, Y., Low, G. K. C., Scott, J. A., & Amal, R. (2010). Arsenic speciation in municipal landfill leachate. Chemosphere, 79(8), 794–801.

    Article  CAS  Google Scholar 

  • Li, Y., Low, G. K. C., Scott, J. A., & Amal, R. (2011). Microbial transformation of arsenic species in municipal landfill leachate. Journal of Hazardous Materials, 188(1–3), 140–147.

    Article  CAS  Google Scholar 

  • Naranmandura, H., Carew, M. W., Xu, S., Lee, J., Leslie, E. M., Weinfeld, M., et al. (2011). Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chemical Research in Toxicology, 24(9), 1586–1596.

    Article  CAS  Google Scholar 

  • Naranmandura, H., Ibata, K., & Suzuki, K. T. (2007). Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chemical Research in Toxicology, 20(8), 1120–1125.

    Article  CAS  Google Scholar 

  • Ochi, T., Kita, K., Suzuki, T., Rumpler, A., Goessler, W., & Francesconi, K. A. (2008). Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione. Toxicology and Applied Pharmacology, 228(1), 59–67.

    Article  CAS  Google Scholar 

  • Pereira, C. D., Garcia, E. E., Silva, F. V., & Nogueira, A. R. A. (2010). Behaviour of arsenic and selenium in an ICP-QMS with collision and reaction interface. Journal of Analytical Atomic Spectrometry, 25, 1763–1768.

    Article  CAS  Google Scholar 

  • Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Aposhian, H. V. (2000). Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207.

    Article  CAS  Google Scholar 

  • Pinel-Raffaitin, P., Le Hecho, I., Amouroux, D., & Potin-Gautier, M. (2007). Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environmental Science and Technology, 41(13), 4536–4541.

    Article  CAS  Google Scholar 

  • Ponthieu, M., Pinel-Raffaitin, P., Hecho, I. L., Mazeas, L., Amouroux, D., Donard, O. X. F., et al. (2007). Speciation analysis of arsenic in landfill leachate. Water Research, 41(14), 3177–3185.

    Article  CAS  Google Scholar 

  • Rader, K. J., Dombrowski, P. M., Farley, K. J., Mahony, J. D., & Di Toro, D. M. (2004). Effect of thioarsenite formation on arsenic(III) toxicity. Environmental Toxicology and Chemistry, 23(7), 1649–1654.

    Article  CAS  Google Scholar 

  • Raml, R., Goessler, W., & Francesconi, K. A. (2006). Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1128(1–2), 164–170.

    Article  CAS  Google Scholar 

  • Raml, R., Rumpler, A., Goessler, W., Vahter, M., Li, L., Ochi, T., et al. (2007). Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicology and Applied Pharmacology, 222(3), 374–380.

    Article  CAS  Google Scholar 

  • Ritsema, R., Dukan, L., Navarro, T. R. I., van Leeuwen, W., Oliveira, N., Wolfs, P., et al. (1998). Speciation of arsenic compounds in urine by LC–ICP MS. Applied Organometallic Chemistry, 12(8–9), 591–599.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.

    Article  CAS  Google Scholar 

  • Suzuki, S., Arnold, L. L., Pennington, K. L., Chen, B., Naranmandura, H., Le, X. C., et al. (2010). Dietary administration of sodium arsenite to rats: Relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. Toxicology and Applied Pharmacology, 244(2), 99–105.

    Article  CAS  Google Scholar 

  • Suzuki, K. T., Mandal, B. K., Katagiri, A., Sakuma, Y., Kawakami, A., Ogra, Y., et al. (2004). Dimethylthioarsenicals as arsenic metabolites and their chemical preparations. Chemical Research in Toxicology, 17(7), 914–921.

    Article  CAS  Google Scholar 

  • Tu, C., Ma, L. Q., Zhang, W., Cai, Y., & Harris, W. G. (2003). Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris Vittata L.). Environmental Pollution, 124(2), 223–230.

    Article  CAS  Google Scholar 

  • van de Wiel, H.J. (2004). Determination of elements by ICP-AES and ICP-MS. National Institute for Public Health and the Environment (RIVM), The Netherlands.

  • Wangkarn, S., & Pergantis, S. A. (2000). High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 15, 627–633.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant from the Korea Basic Science Institute (Project No. T32603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye-On Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Kim, KH., Kong, M. et al. Formation of dimethyldithioarsinic acid in a simulated landfill leachate in relation to hydrosulfide concentration. Environ Geochem Health 38, 255–263 (2016). https://doi.org/10.1007/s10653-015-9714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9714-z

Keywords

Navigation