Environmental Geochemistry and Health

, Volume 37, Issue 3, pp 457–473 | Cite as

Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region

  • Jukun Xiong
  • Taicheng An
  • Chaosheng Zhang
  • Guiying LiEmail author
Original Paper


The aim of this study was to assess the pollution profiles of various typical brominated flame retardants in water and surface sediment near a typical electronic waste dismantling region in southern China. We found that polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA), and bisphenol A (BPA) were ubiquitous in the water and sediment samples collected in the study region. In water, Σ19PBDEs (sum of all 20 PBDE congeners studied except BDE-209, which was below the detection limit) levels ranged from 0.31 to 8.9 × 102 ng L−1. TBP, PeBP, TBBPA, and BPA concentrations in the water samples ranged from not being detectable (nd—under the detection limit) to 3.2 × 102 (TBP), from nd to 37 (PeBP), from nd to 9.2 × 102 (TBBPA) and from nd–8.6 × 102 ng L−1 (BPA). In sediment, Σ19PBDEs ranged from nd to 5.6 × 103 ng g−1, while BDE-209 was the predominant congener, with a range of nd to 3.5 × 103 ng g−1. Tri- to hepta-BDE concentrations were significantly (p < 0.01) correlated with each other, except for BDE-71 and BDE-183, and octa- to nona-BDEs concentrations were significantly (p < 0.05) correlated with each other, except for BDE-208. BDE-209 was not significantly correlated with tri- to nona-BDEs. Risk assessments indicated that the water and sediment across the sampling sites posed no estrogenic risk. However, different eco-toxicity risk degrees at three trophic levels did exist at most sampling sites.


Brominated flame retardants PBDEs Bromophenols Pollution profiles E-waste dismantling Risk assessment 



This is contribution No. 1971 from GIGCAS. The authors gratefully acknowledge the financial support from NSFC (41373103 and U1201234) and Earmarked Fund of SKLOG (SKLOG2011A02). The authors also express their thanks to Yong Huang for his help in collecting samples.

Supplementary material

10653_2014_9658_MOESM1_ESM.doc (844 kb)
Supplementary material 1 (DOC 844 kb)


  1. Alaee, M., Arias, P., Sjödin, A., & Bergman, Å. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29(6), 683–689.CrossRefGoogle Scholar
  2. An, T. C., Chen, J. X., Li, G. Y., Ding, X. J., Sheng, G. Y., Fu, J. M., et al. (2008). Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts degradation of decabromodiphenyl ether (BDE 209). Catalysis Today, 139(1–2), 69–76.CrossRefGoogle Scholar
  3. An, T. C., Zhang, D. L., Li, G. Y., Mai, B. X., & Fu, J. M. (2011a). On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China: Gas-particle partitioning and human exposure assessment. Environmental Pollution, 159(12), 3529–3535.CrossRefGoogle Scholar
  4. An, T. C., Zu, L., Li, G. Y., Wan, S. G., Mai, B. X., & Wong, P. K. (2011b). One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site. Bioresource Technology, 102(19), 9148–9154.CrossRefGoogle Scholar
  5. Arbeli, Z., & Ronen, Z. (2003). Enrichment of a microbial culture capable of reductive debromination of the flame retardant tetrabromobisphenol-A, and identification of the intermediate metabolites produced in the process. Biodegradation, 14(6), 385–395.CrossRefGoogle Scholar
  6. Binelli, A., Sarkar, S. K., Chatterjee, M., Riva, C., Parolini, M., Bhattacharya, B. D., et al. (2007). Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India). Marine Pollution Bulletin, 54(8), 1220–1229.CrossRefGoogle Scholar
  7. Bjorklund, J. A., Thuresson, K., Cousins, A. P., Sellstrom, U., Emenius, G., & de Wit, C. A. (2012). Indoor air is a significant source of tri-decabrominated diphenyl ethers to outdoor air via ventilation systems. Environmental Science and Technology, 46(11), 5876–5884.CrossRefGoogle Scholar
  8. Bradley, P. W., Wan, Y., Jones, P. D., Wiseman, S., Chang, H., Lam, M. H., et al. (2011). PBDEs and methoxylated analogues in sediment cores from two Michigan, USA, inland lakes. Environmental Toxicology and Chemistry, 30(6), 1236–1242.CrossRefGoogle Scholar
  9. Chen, S. J., Feng, A. H., He, M. J., Chen, M. Y., Luo, X. J., & Mai, B. X. (2013). Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: Comparison with historical data. Science of the Total Environment, 444, 205–211.CrossRefGoogle Scholar
  10. Chen, S. J., Luo, X. J., Lin, Z., Luo, Y., Li, K. C., Peng, X. Z., et al. (2007). Time trends of polybrominated diphenyl ethers in sediment cores from the Pearl River Estuary, South China. Environmental Science and Technology, 41(16), 5595–5600.CrossRefGoogle Scholar
  11. EU Commission. (1996). Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances. Office for Official Publications of the European Communities, Luxembourg, pp. 328–334.Google Scholar
  12. EU Commission. (2003). Technical guidance document on risk assessment in support of commission Directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances. Directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market. Part II. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  13. Cristale, J., García Vázquez, A., Barata, C., & Lacorte, S. (2013a). Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environment International, 59, 232–243.CrossRefGoogle Scholar
  14. Cristale, J., Katsoyiannis, A., Sweetman, A. J., Jones, K. C., & Lacorte, S. (2013b). Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK). Environmental Pollution, 179, 194–200.CrossRefGoogle Scholar
  15. de Wit, C. A., Herzke, D., & Vorkamp, K. (2010). Brominated flame retardants in the Arctic environment—Trends and new candidates. Science of the Total Environment, 408(15), 2885–2918.CrossRefGoogle Scholar
  16. Di Toro, D. M., Zarba, C. S., Hansen, D. J., Berry, W. J., Swartz, R. C., Cowan, C. E., et al. (1991). Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry, 10(12), 1541–1583.CrossRefGoogle Scholar
  17. Du, W. C., Ji, R., Sun, Y. Y., Zhu, J. G., Wu, J. C., & Guo, H. Y. (2013). Fate and ecological effects of decabromodiphenyl ether in a field lysimeter. Environmental Science and Technology, 47(16), 9167–9174.CrossRefGoogle Scholar
  18. Feng, A. H., Chen, S. J., Chen, M. Y., He, M. J., Luo, X. J., & Mai, B. X. (2012). Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Marine Pollution Bulletin, 64(5), 919–925.CrossRefGoogle Scholar
  19. Fujii, Y., Nishimura, E., Kato, Y., Harada, K. H., Koizumi, A., & Haraguchi, K. (2014). Dietary exposure to phenolic and methoxylated organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan. Environment International, 63, 19–25.CrossRefGoogle Scholar
  20. Ginebreda, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36(2), 153–162.CrossRefGoogle Scholar
  21. Gorga, M., Martinez, E., Ginebreda, A., Eljarrat, E., & Barcelo, D. (2013). Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Science of the Total Environment, 444, 51–59.CrossRefGoogle Scholar
  22. He, M. J., Luo, X. J., Yu, L. H., Wu, J. P., Chen, S. J., & Mai, B. X. (2013). Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China: Vertical profile, phase partition, and bioaccumulation. Environmental Pollution, 179, 105–110.CrossRefGoogle Scholar
  23. Huang, H. W., Chang, B. V., & Lee, C. C. (2014a). Reductive debromination of decabromodiphenyl ether by anaerobic microbes from river sediment. International Biodeterioration and Biodegradation, 87, 60–65.CrossRefGoogle Scholar
  24. Huang, D. Y., Zhao, H. Q., Liu, C. P., & Sun, C. X. (2014b). Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China. Environmental Science and Pollution Research, 21(9), 5818–5826.CrossRefGoogle Scholar
  25. Jin, S. W., Yang, F. X., Xu, Y., Dai, H. P., & Liu, W. P. (2013). Risk assessment of xenoestrogens in a typical domestic sewage-holding lake in China. Chemosphere, 93(6), 892–898.CrossRefGoogle Scholar
  26. Kitamura, S., Suzuki, T., Sanoh, S., Kohta, R., Jinno, N., Sugihara, K., et al. (2005). Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicological Sciences, 84(2), 249–259.CrossRefGoogle Scholar
  27. Kuramochi, H., Kawamoto, K., Miyazaki, K., Nagahama, K., Maeda, K., Li, X. W., et al. (2008). Determination of physicochemical properties of tetrabromobisphenol A. Environmental Toxicology and Chemistry, 27(12), 2413–2418.CrossRefGoogle Scholar
  28. La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-pbde technical flame-retardant mixtures. Environmental Science and Technology, 40(20), 6247–6254.CrossRefGoogle Scholar
  29. Labadie, P., Tlili, K., Alliot, F., Bourges, C., Desportes, A., & Chevreuil, M. (2010). Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment. Analytical and Bioanalytical Chemistry, 396(2), 865–875.CrossRefGoogle Scholar
  30. Law, R. J., Alaee, M., Allchin, C. R., Boon, J. P., Lebeuf, M., Lepom, P., & Stern, G. A. (2003). Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. Environment International, 29(6), 757–770.CrossRefGoogle Scholar
  31. Lee, H. J., An, S., & Kim, G. B. (2014). Background level and composition of polybrominated diphenyl ethers (PBDEs) in creek and subtidal sediments in a rural area of Korea. Science of the Total Environment, 470–471, 1479–1484.CrossRefGoogle Scholar
  32. Lee, I. S., Kim, K. S., Kim, S. J., Yoon, J. H., Choi, K. H., Choi, S. D., & Oh, J. E. (2012). Evaluation of mono- to deca-brominated diphenyl ethers in riverine sediment of Korea with special reference to the debromination of DeBDE209. Science of the Total Environment, 432, 128–134.CrossRefGoogle Scholar
  33. Li, Y., Lin, T., Chen, Y., Hu, L., Guo, Z., & Zhang, G. (2012a). Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: Occurrence, distribution and mass inventory. Environmental Pollution, 171, 155–161.CrossRefGoogle Scholar
  34. Li, F. J., Wang, J. J., Nastold, P., Jiang, B. Q., Sun, F. F., Zenker, A., et al. (2014). Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp strain TTNP3. Environmental Pollution, 193, 181–188.CrossRefGoogle Scholar
  35. Li, G. Y., Zu, L., Wong, P. K., Hui, X., Lu, Y., Xiong, J. K., & An, T. C. (2012b). Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresource Technology, 114, 224–230.CrossRefGoogle Scholar
  36. Liu, F., Liao, C. Y., Fu, J. J., Lv, J. G., Xue, Q. Z., & Jiang, G. B. (2014). Polycyclic aromatic hydrocarbons and organochlorine pesticides in rice hull from a typical e-waste recycling area in southeast China: Temporal trend, source, and exposure assessment. Environmental Geochemistry and Health, 36(1), 65–77.CrossRefGoogle Scholar
  37. Liu, J., Wang, Y. F., Jiang, B. Q., Wang, L. H., Chen, J. Q., Guo, H. Y., & Ji, R. (2013). Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol a in soil during sequential anoxic-oxic incubation. Environmental Science and Technology, 47(15), 8348–8354.CrossRefGoogle Scholar
  38. Lopez, P., Brandsma, S. A., Leonards, P. E. G., & De Boer, J. (2009). Methods for the determination of phenolic brominated flame retardants, and by-products, formulation intermediates and decomposition products of brominated flame retardants in water. Journal of Chromatography A, 1216(3), 334–345.CrossRefGoogle Scholar
  39. Malik, R. N., Mehboob, F., Ali, U., Katsoyiannis, A., Schuster, J. K., Moeckel, C., & Jones, K. C. (2014). Organo-halogenated contaminants (OHCs) in the sediments from the Soan River, Pakistan: OHCs (adsorbed TOC) burial flux, status and risk assessment. Science of the Total Environment, 481, 343–351.CrossRefGoogle Scholar
  40. Marcus, M. D., Covington, S., Liu, B., & Smith, N. R. (2010). Use of existing water, sediment, and tissue data to screen ecological risks to the endangered Rio Grande silvery minnow. The Science of the Total Environment, 409(1), 83–94.CrossRefGoogle Scholar
  41. Mariani, G., Canuti, E., Castro-Jiménez, J., Christoph, E. H., Eisenreich, S. J., Hanke, G., et al. (2008). Atmospheric input of POPs into Lake Maggiore (Northern Italy): PBDE concentrations and profile in air, precipitation, settling material and sediments. Chemosphere, 73[Suppl 1], S114–S121.CrossRefGoogle Scholar
  42. Möller, A., Xie, Z., Sturm, R., & Ebinghaus, R. (2011). Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants in air and seawater of the European Arctic. Environmental Pollution, 159(6), 1577–1583.CrossRefGoogle Scholar
  43. Moon, H. B., Choi, M., Yu, J., Jung, R. H., & Choi, H. G. (2012). Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea. Chemosphere, 88(7), 837–843.CrossRefGoogle Scholar
  44. Nakajima, A., Saigusa, D., Tetsu, N., Yamakuni, T., Tomioka, Y., & Hishinuma, T. (2009). Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicology Letters, 189(1), 78–83.CrossRefGoogle Scholar
  45. Nouira, T., Risso, C., Chouba, L., Budzinski, H., & Boussetta, H. (2013). Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface sediments from Monastir Bay (Tunisia, Central Mediterranean): Occurrence, distribution and seasonal variations. Chemosphere, 93(3), 487–493.CrossRefGoogle Scholar
  46. National Industrial Chemicals Notification and Assessments Scheme (NICNAS). (2001). PBFRs, P.F.R. Priority Existing Chemical Assessment Report No. 20. NICNAS/Australian Government, Marrickville.Google Scholar
  47. Polo, M., Llompart, M., Garcia-Jares, C., Gomez-Noya, G., Bollain, M. H., & Cela, R. (2006). Development of a solid-phase microextraction method for the analysis of phenolic flame retardants in water samples. Journal of Chromatography A, 1124(1–2), 11–21.CrossRefGoogle Scholar
  48. Reistad, T., Mariussen, E., & Fonnum, F. (2005). The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: The involvement of the MAP kinase pathway and protein kinase C. Toxicological Sciences, 56, 95–104.Google Scholar
  49. Ronen, Z., & Abeliovich, A. (2000). Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Applied and Environmental Microbiology, 66(6), 2372–2377.CrossRefGoogle Scholar
  50. Sánchez-Avila, J., Tauler, R., & Lacorte, S. (2012). Organic micropollutants in coastal waters from NW Mediterranean Sea: Sources distribution and potential risk. Environment International, 46, 50–62.CrossRefGoogle Scholar
  51. Shi, Z. X., Jiao, Y., Hu, Y., Sun, Z. W., Zhou, X. Q., Feng, J. F., et al. (2013). Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China. Science of the Total Environment, 452–453, 10–18.CrossRefGoogle Scholar
  52. Staples, C. A., Dome, P. B., Klecka, G. M., Oblock, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36(10), 2149–2173.CrossRefGoogle Scholar
  53. Sun, C., Chang, W., Ma, W., Chen, C., & Zhao, J. (2013a). Photoreductive debromination of decabromodiphenyl ethers in the presence of carboxylates under visible light irradiation. Environmental Science and Technology, 47(5), 2370–2377.CrossRefGoogle Scholar
  54. Sun, Y., Huang, H., Sun, Y., Wang, C., Shi, X. L., Hu, H. Y., et al. (2013b). Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. Environmental Pollution, 180, 339–344.CrossRefGoogle Scholar
  55. Takigami, H., Suzuki, G., Hirai, Y., & Sakai, Si. (2009). Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. Chemosphere, 76(2), 270–277.CrossRefGoogle Scholar
  56. Tang, Z. W., Huang, Q. F., Cheng, J. L., Yang, Y. F., Yang, J., Guo, W., et al. (2014). Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: A neglected heavily polluted area. Environmental Science and Technology, 48(3), 1508–1516.CrossRefGoogle Scholar
  57. Wang, X. W., Xi, B. D., Huo, S. L., Deng, L., Pan, H. W., Xia, X. F., et al. (2013). Polybrominated diphenyl ethers occurrence in major inflowing rivers of Lake Chaohu (China): Characteristics, potential sources and inputs to lake. Chemosphere, 93(8), 1624–1631.CrossRefGoogle Scholar
  58. Wong, C. S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2007). Evidence of excessive releases of metals from primitive e-waste processing in Guiyu. China. Environmental Pollution, 148(1), 62–72.CrossRefGoogle Scholar
  59. Xing, G. H., Chan, J. K. Y., Leung, A. O. W., Wu, S. C., & Wong, M. H. (2009). Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environment International, 35(1), 76–82.CrossRefGoogle Scholar
  60. Yu, Z. Q., Liao, R., Li, H. R., Mo, L. G., Zeng, X. Y., Sheng, G. Y., & Fu, J. M. (2011). Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China. Environmental Pollution (Barking, Essex: 1987), 159(10), 2982–2988.CrossRefGoogle Scholar
  61. Zhang, D. L., An, T. C., Qiao, M., Loganathan, B. G., Zeng, X. Y., Sheng, G. Y., & Fu, J. M. (2011). Source identification and health risk of polycyclic aromatic hydrocarbons associated with electronic dismantling in Guiyu town, South China. Journal of Hazardous Materials, 192(1), 1–7.CrossRefGoogle Scholar
  62. Zhang, X. L., Luo, X. J., Chen, S. J., Wu, J. P., & Mai, B. X. (2009). Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China. Environmental Pollution, 157(6), 1917–1923.CrossRefGoogle Scholar
  63. Zhao, X., Zhang, H., Ni, Y., Lu, X., Zhang, X., Su, F., et al. (2011). Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China: Levels, distribution and their influencing factors. Chemosphere, 82(9), 1262–1267.CrossRefGoogle Scholar
  64. Zu, L., Li, G. Y., An, J. B., Li, J. J., & An, T. C. (2013). Kinetic optimization of biodegradation and debromination of 2,4,6-tribromophenol using response surface methodology. International Biodeterioration and Biodegradation, 76, 18–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jukun Xiong
    • 1
    • 3
  • Taicheng An
    • 1
  • Chaosheng Zhang
    • 2
  • Guiying Li
    • 1
  1. 1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.GIS Centre, Ryan Institute and School of Geography and ArchaeologyNational University of IrelandGalwayIreland
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations