Environmental Geochemistry and Health

, Volume 37, Issue 1, pp 181–193 | Cite as

Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir

  • Manfred Sager
  • Hyo-Taek Chon
  • Laszlo Marton
Original Paper


Roadside dusts were studied to explain the spatial variation and present levels of contaminant elements including Pt, Pd and Ir in urban environment and around Budapest (Hungary) and Seoul (Republic of Korea). The samples were collected from six sites of high traffic volumes in Seoul metropolitan city and from two control sites within the suburbs of Seoul, for comparison. Similarly, road dust samples were obtained two times from traffic focal points in Budapest, from the large bridges across the River Danube, from Margitsziget (an island in the Danube in the northern part of Budapest, used for recreation) as well as from main roads (no highways) outside Budapest. The samples were analysed for contaminant elements by ICP-AES and for Pt, Pd and Ir by ICP-MS. The highest Pt, Pd and Ir levels in road dusts were found from major roads with high traffic volume, but correlations with other contaminant elements were low, however. This reflects automobile catalytic converter to be an important source. To interpret the obtained multi-element results in short, pollution index, contamination index and geo-accumulation index were calculated. Finally, the obtained data were compared with total concentrations encountered in dust samples from Madrid, Oslo, Tokyo and Muscat (Oman). Dust samples from Seoul reached top level concentrations for Cd–Zn–As–Co–Cr–Cu–Mo–Ni–Sn. Just Pb was rather low because unleaded gasoline was introduced as compulsory in 1993. Concentrations in Budapest dust samples were lower than from Seoul, except for Pb and Mg. Compared with Madrid as another continental site, Budapest was higher in Co–V–Zn. Dust from Oslo, which is not so large, contained more Mn–Na–Sr than dust from other towns, but less other metals.


Contaminant elements Pt Pd Ir Road dusts Urban environment 



This study was supported partly by the Engineering Research Institute of Seoul National University in Korea.


  1. Ajmone-Marsan, F., Biasoli, M., (2010). Trace Elements in Soils of Urban Areas. Water, Air, & Soil Pollution, 213, 121–143. (Review).Google Scholar
  2. Chon, H. T., Ahn, J. S., & Jung, M. C. (1998). Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environmental Geochemistry and Health, 20, 77–86.CrossRefGoogle Scholar
  3. Chon, H. T., Kim, K. W., & Kim, J. Y. (1995). Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environmental Geochemistry and Health, 17, 139–146.CrossRefGoogle Scholar
  4. da Silva, L. I. D., de Souza Sarkis, J. E., Zotin, F. M. Z., Carneiro, M. C., Neto, A. A., da Silva, A. S. A. G., et al. (2008). Traffic and catalytic converter related atmospheric contamination in the metropolitan region of the city of Rio de Janeiro, Brazil. Chemosphere, 71, 677–684.CrossRefGoogle Scholar
  5. Danneberg, O. (1999). Hintergrundwerte von Spurenelementen in den landwirtschaftlich genutzten Böden Ostösterreichs. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft, 57, 7–24.Google Scholar
  6. de Miguel, E., Llamas, J. F., Chacón, E., Berg, T., Larssen, S., Røyset, O., et al. (1997). Origin and Patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmospheric Environment, 31(17), 2733–2740.CrossRefGoogle Scholar
  7. Dirksen, F., Zereini, F., Skerstupp, B., Urban, H., (1999). PGE Konzentrationen in Böden entlang der Autobahnen A45 und A3 im Vergleich zu Böden im Einflussbereich der edelmetallverarbeitenden Industrie in Hanau. Aus: Emissionen von Platinmetallen, F. Zereini & F. Alt Hrsg. Springer Heidelberg.Google Scholar
  8. Fritsche, J., & Meisel, T. (2004). Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICPMS. Science of the Total Environment, 325, 145–154.CrossRefGoogle Scholar
  9. Fujiwara, F., Jimenez Rebagliati, R., Dawidowski, L., Gomez, D., Polla, G., Pereyra, V., et al. (2011). Spatial and chemical patterns of size fractionated road dust collected in a megacity. Atmospheric Environment, 45, 1497–1505.CrossRefGoogle Scholar
  10. Furuta, N., Iijima, A., Sakai, K., & Sato, K. (2005). Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. Journal of Environmental Monitoring, 7, 1155–1161.CrossRefGoogle Scholar
  11. Gomez, B., Placios, M. A., Gomez, M., Sanchez, J. L., Morrison, G., et al. (2002). Levels and risk assessment for humans and ecosystems of platinum-group elements I the airborne particles and road dust of some European cities. The Science of the Total Environment, 299, 1–29.CrossRefGoogle Scholar
  12. Gondi, F., Hartányi, Zs, Nemecz, E., Sipos, P., & Szendrei, G. (2004). A hazai környezet-geokémiai kutatások néhány eredménye. Magyar Kémiai Folyóirat-Összefoglaló közlemények, 109–110(4), 204–210.Google Scholar
  13. Hays, M. D., Cho, S. H., Baldauf, R., Schauer, J. J., & Shafer, M. (2011). Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmospheric Environment, 45, 925–934.CrossRefGoogle Scholar
  14. Helmers, E., Schwarzer, M., & Schuster, M. (1998). Comparison of Pd and Pt in Environmental Matrices. Environmental Science and Pollution Research, 5(1), 44–50.CrossRefGoogle Scholar
  15. Hu, S. H., Herner, J. D., Shafer, M., Robertson, W., Schauer, J. J., Dwyer, H., et al. (2009). Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NOx emission controls. Atmospheric Environment, 43, 2950–2959.CrossRefGoogle Scholar
  16. Huang, X., Olmez, I., & Aras, N. K. (1994). Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmospheric Environment, 28(8), 1385–1391.CrossRefGoogle Scholar
  17. Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., & Furuta, N. (2008). Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environmental Science and Technology, 42, 2937–2942.CrossRefGoogle Scholar
  18. Jackson, M. T., Prichard, H. M., & Sampson, J. (2010). Platinum group elements in sewage sludge and incinerator ash in the United Kingdom: Assessment of PGE sources and mobilities in cities. Science of the Total Environment, 408, 1276–1285.CrossRefGoogle Scholar
  19. Jackwerth, E., & Willmer, P. G. (1976). Anreicherung von Spuren Au und Pd aus Reinstmetallen Cd, In, Ni, Pb und Zn mit nachfolgender Bestimmung in der Graphitrohr-Küvette. Talanta, 23, 197–202.CrossRefGoogle Scholar
  20. Kadar, I., & Marton, L. (2012). Element composition of the accumulating air dust in Budapest and its surroundings. Crop Production, 61, 109–124.Google Scholar
  21. Lee, H.Y.,Chon, H.T., Sager, M., (2006). Dispersion and pollution characteristics of platinum in urban environment of Seoul, Korea : Jour Korean Soc. Geosystem Engineering,43, 84–90(in Korean with English abstract).Google Scholar
  22. Lee, H. Y., Chon, H. T., Sager, M., & Marton, L. (2012). Platinum pollution in road dusts, roadside soils, and tree barks in Seoul, Korea. Environmental Geochemistry and Health, 34, 5–12.CrossRefGoogle Scholar
  23. Leopold, K., Maier, M., Weber, S., & Schuster, M. (2008). Long-term study of palladium in road tunnel dust and sewage sludge ash. Environmental Pollution, 156, 341–347.CrossRefGoogle Scholar
  24. Marton, L. (2012). Crop demand of manganese. Environmental Geochemistry and Health, 34, 123–134.CrossRefGoogle Scholar
  25. Marton, L., Sandor, F., Yuriy, V. K., & Petr, K. (2011). Organic carbon changes over 40-years in a haplic luvisol type farmland in hungary. Journal of Agricultural Science and Technology A, 1, 913–920.Google Scholar
  26. Merget, R., & Rosner, G. (2001). Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. The Science of the Total Environment, 270, 165–173.CrossRefGoogle Scholar
  27. Müller, G. (1981). Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflüsse–eine Bestandsaufnahme. Chemiker-Zeitung, 105, 157–164.Google Scholar
  28. Müller, G. (1979). Schwermetalle in den sedimenten des rheins–veränderungen seit 1971. Umschau, 79, 778–783.Google Scholar
  29. Ondraček, J., Schwarz, J., Ždimal, V., Andelova, L., Vodička, P., Bizek, V., et al. (2011). Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmospheric Environment, 45, 5090–5100.CrossRefGoogle Scholar
  30. Panwar, B. S., Grewal, M. S., & Marton, L. (2007). Kinetics of cadmium in different Indian and hungarian soils: Incubation study at field capacity. Acta Agronomica Hungarica, 55, 165–171.CrossRefGoogle Scholar
  31. Panwar, B. S., Kadar, I., Biro, B., Rajkai-Vegh, K., Ragalyi, P., Rekasi, M., et al. (2011). Phytoremediation: Enhanced cadmium (Cd) accumulation by organic manuring, EDTA and microbial inoculants (Azotobacter sp., Pseudomonas sp.) in Indian mustard (Brassica juncea L.). Acta Agronomica Hungarica, 59, 101–107. doi: 10.1556/AAgr.59.2011.2.2.CrossRefGoogle Scholar
  32. Panwar, B. S., Marton, L., Kadar, I., Anton, A., & Nemeth, T. (2010). Phytoremediation: A novel green technology to restore soil health. Acta Agronomica Hungarica, 58, 443–458.CrossRefGoogle Scholar
  33. Petr, K., Ivana, C., Zdenek, S., Jan, M., Jan, M., & Laszlo, M, Jr. (2011). Variation for carbon isotope ratio in a set of emmer (Triticum dicoccum Schrank) and bread wheat (Triticum aestivum L.) accessions. African Journal of Biotechnology, 10, 4450–4456.Google Scholar
  34. Pratt, C., & Lottermoser, B. (2007). Mobilisation of traffic-derived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, Northern Australia. Environmental Geology, 52, 437–448.CrossRefGoogle Scholar
  35. Prichard, H. M., Sampson, J., & Jackson, M. (2009). A further discussion of the factors controlling the distribution of Pt, Pd, Rh and Au in road dust, gullies, road sweeper and gully flusher sediment in the city of Sheffield, UK. Science of the Total Environment, 407, 1715–1725.CrossRefGoogle Scholar
  36. Rauch, S., & Morrison, G. M. (2008). Environmental relevance of the platinum = group elements. Elements, 4, 259–263.CrossRefGoogle Scholar
  37. Ravindra, K., Bencs, L., & Grieken, R. V. (2004). Platinum group elements in the environment and their health risk. The Science of the Total Environment, 318, 1–43.CrossRefGoogle Scholar
  38. Reith, F., Campbell, S. G., Ball, A. S., Pring, A., & Southam, G. (2014). Platinum in earth surface environments. Earth-Science Reviews, 131, 1–21.CrossRefGoogle Scholar
  39. Sager, M. (1999). Environmental aspects of trace elements in coal combustion. Toxicological and Environmental Chemistry, 71, 159–183.CrossRefGoogle Scholar
  40. Ward, N. I., & Dudding, L. M. (2004). Platinum emissions and levels in motorway dust samples: Influence of traffic characteristics. Science Total Environment, 334(335), 457–463.CrossRefGoogle Scholar
  41. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.CrossRefGoogle Scholar
  42. Yaghi, B., & Abdul-Wahab, S. A. (2004). Levels of heavy metals in outdoor and indoor dusts in Muscat, Oman. International Journal of Environmental Studies, 61(3), 307–314.CrossRefGoogle Scholar
  43. Yoon, J. K., Kim, D. H., Kim, T. S., Park, J. G., Chung, I. R., Kim, J. H., et al. (2009). Evaluation on natural background of the soil heavy metals in Korea. Journal of Soil and Groundwater Environment, 14(3), 32–39.Google Scholar
  44. Zereini,F., Alt, F., (Ed) (2000) Anthropogenic platinum group element emissions. Springer, Berlin, 308p.Google Scholar
  45. Zereini, F., Wiseman, C., Magnus Beyer, J., Artelt, S., & Urban, H. (2001). Platinum, lead and cerium concentrations of street particulate matter (Frankfurt am Main, Germany). Journal of Soils and Sediments, 1, 188–195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Austrian Agency for Health and Food SafetyViennaAustria
  2. 2.Department of Energy Resources EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Institute for Soil Sciences and Agricultural Chemistry Center for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations