Environmental Geochemistry and Health

, Volume 36, Issue 6, pp 1151–1164 | Cite as

Iodine concentrations in Danish groundwater: historical data assessment 1933–2011

  • Denitza Dimitrova Voutchkova
  • Søren Munch Kristiansen
  • Birgitte Hansen
  • Vibeke Ernstsen
  • Brian Lyngby Sørensen
  • Kim H. Esbensen
Original Paper


In areas where water is a major source of dietary iodine (I), the I concentration in drinking water is an important factor for public health and epidemiological understandings. In Denmark, almost all of the drinking water is originating from groundwater. Therefore, understanding the I variation in groundwater and governing factors and processes are crucial. In this study, we perform uni- and multivariate analyses of all available historical Danish I groundwater data from 1933 to 2011 (n = 2,562) to give an overview on the I variability for first time and to discover possible geochemical associations between I and twenty other elements and parameters. Special attention is paid on the description and the quality assurance of this complex compilation of historical data. The high variability of I in Danish groundwater (<d.l. to 1,220 µg/l) is characterised by both small-scale heterogeneity and large-scale spatial trends, e.g. higher concentrations observed in the eastern part of Denmark. Significant trends are observed also with respect to the depth of extraction and geology, indicating the importance of older marine limestone and chalk deposits. A principal component analysis on centred log-ratio-transformed data (clr) revealed associations between I, Li, B, Ba, Br implying saline water influence. High I is also associated with reduced and alkaline groundwaters for this data set, dominated by Ca–HCO3 water type.


Iodine Groundwater Denmark Multivariate data analysis Compositional data 



This paper is part of the Ph. D. study of the first author; the Ph. D. project was funded by GEOCENTER Denmark. We gratefully acknowledge the financial support by the Geological Survey of Denmark and Greenland (GEUS) and Aarhus University.

Supplementary material

10653_2014_9625_MOESM1_ESM.pdf (735 kb)
Supplementary material 1 (PGF 736 kb)


  1. Andersen, S., & Lauberg, P. (2009). The Nature of Iodine in Drinking Water. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 125–134). London: Academic Press.Google Scholar
  2. Andersen, S., Petersen, S. B., & Laurberg, P. (2002). Iodine in drinking water in Denmark is bound in humic substances. European Journal of Endocrinology, 147(5), 663–670. doi: 10.1530/eje.0.1470663.CrossRefGoogle Scholar
  3. Buccianti, A., & Pawlowsky-Glahn, V. (2005). New perspectives on water chemistry and compositional data analysis. Mathematical Geology, 37(7), 703–727. doi: 10.1007/s11004-005-7376-6.CrossRefGoogle Scholar
  4. CAMO. (2011). The unscrambler (10.1 (64-bit) ed), CAMO Software AC.Google Scholar
  5. Comas-Cufí, M., & Thió-Henestrosa, S. (2011). CoDaPack 2.0: A stand-alone, multi-platform compositional software. In J. J. Egozcue, R. Tolosana-Delgado, & M. I. Ortego (Eds.), CoDaWork’11: 4th international workshop on compositional data analysis (2.01.13 ed). Sant Feliu de Guíxols.Google Scholar
  6. Daunis-I-Estadella, J., Barceló-Vidal, C., & Buccianti, A. (2006). Exploratory compositional data analysis (vol. 264, pp. 161–174).Google Scholar
  7. Esbensen, K. H. (2010). Multivariate data analysisIn practice (5th ed), CAMO Softwares AS.Google Scholar
  8. ESRI. (1999–2010). ArcMap (10.0 ed).Google Scholar
  9. Fuge, R. (2005). Soils and Iodine Deficiency. In O. Selinus, B. J. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, et al. (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 417–433). Amsterdam: Elsevier.Google Scholar
  10. Gilfedder, B. S., Petri, M., & Biester, H. (2009). Iodine speciation and cycling in fresh waters: A case study from a humic rich headwater lake (Mummelsee). Journal of Limnology, 68(2), 396–408.CrossRefGoogle Scholar
  11. Håkansson, E., & Pedersen, S. S. (1992). Geologisk Kort over den Danske Undergrund VARV.Google Scholar
  12. Hansen, B., Mossin, L., Ramsay, L., Thorling, L., Ernstsen, V., Jørgensen, J., et al. (2009). Kemisk grundvandskortlægning. In GEUS (Ed.), (pp. 1–112). Øster Voldgade 10, DK-1350 København K: GEUS.Google Scholar
  13. Hansen, B., Thorling, L., Dalgaard, T., & Erlandsen, M. (2011). Trend reversal of nitrate in Danish groundwater—a reflection of agricultural practices and nitrogen surpluses since 1950. Environmental Science and Technology, 45(1), 228–234.CrossRefGoogle Scholar
  14. Hou, X. (2009). Iodine Speciation in Foodstuffs, Tissues, and Environmental Samples: Iodine species and Analytical Method. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 139–150). London: Academic Press.Google Scholar
  15. Hou, X., Aldahan, A., Nielsen, S. P., & Possnert, G. (2009). Time series of 129I and 127I speciation in precipitation from Denmark. Environmental Science and Technology, 43(17), 6522–6528.CrossRefGoogle Scholar
  16. Hu, Q., Moran, J. E., & Blackwood, V. (2009). Geochemical Cycling of Iodine Species in Soils. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 93–105). London: Academic Press.Google Scholar
  17. Ito, K., & Hirokawa, T. (2009). Iodine and Iodine species in Seawater: Speciation, Distribution, and Dynamics. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 83–91). London: Academic Press.Google Scholar
  18. JUPITER—Danmarks geologiske & hydrologiske database (2011).
  19. Kelstrup, N., Bækgaard, A., & Andersen, L. J. (1982). Grundvandsressourcer i Danmark (f. o. n. s. Generaldirektoratet for miljø, Trans.). Hannover: Kommissionen for de Europæiske Fællesskaber.Google Scholar
  20. Laurberg, P., Jørgensen, T., Perrild, H., Ovesen, L., Knudsen, N., Pedersen, I. B., et al. (2006). The Danish investigation on iodine intake and thyroid disease, DanThyr: Status and perspectives. European Journal of Endocrinology, 155(2), 219–228.CrossRefGoogle Scholar
  21. Mokrik, R., Karro, E., Savitskaja, L., & Drevaliene, G. (2009). The origin of barium in the Cambrian-Vendian aquifer system, North Estonia. Baariumi päritolu Kambriumi-Vendi veekompleksis Põhja-Eestis, 58(3), 193–208.Google Scholar
  22. Muramatsu, Y., Fehn, U., & Yoshida, S. (2001). Recycling of iodine in fore-arc areas: Evidence from the iodine brines in Chiba, Japan. Earth and Planetary Science Letters, 192(4), 583–593.CrossRefGoogle Scholar
  23. Muramatsu, Y., & Wedepohl, H. K. (1998). The distribution of iodine in the earth’s crust. Chemical Geology, 147(3–4), 201–216. doi: 10.1016/s0009-2541(98)00013-8.CrossRefGoogle Scholar
  24. Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: an introduction. Geological Society, London, Special Publications, 264(1), 1–10. doi: 10.1144/gsl.sp.2006.264.01.01.CrossRefGoogle Scholar
  25. Pedersen, A. N., Fagt, S., Groth, M. V., Christensen, T., Biltoft-Jensen, A., Matthiessen, J., et al. (2010). Danskernes kostvaner 2003–2008 (D. Fødevareinstituttet, Trans.). (pp. 1–200): DTU Fødevareinstituttet.Google Scholar
  26. Pedersen, K. M., Laurberg, P., Nøhr, S., Jørgensen, A., & Andersen, S. (1999). Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. European Journal of Endocrinology, 140(5), 400–403.CrossRefGoogle Scholar
  27. Rasmussen, L. B., Larsen, E. H., & Ovesen, L. (2000). Iodine content in drinking water and other beverages in Denmark. European Journal of Clinical Nutrition, 54(1), 57–60.CrossRefGoogle Scholar
  28. Rasmussen, L. B., Ovesen, L., Bülow, I., Jørgensen, T., Knudsen, N., Laurberg, P., et al. (2002). Dietary iodine intake and urinary iodine excretion in a Danish population: effect of geography, supplements and food choice. The British Journal of Nutrition, 87(1), 61–69. doi: 10.1079/bjn2001474.CrossRefGoogle Scholar
  29. Reimann, C., & Birke, M. (2010). Geochemistry of european bottled water. Stuttgart, Germany: Borntraeger Science Publishers.Google Scholar
  30. Sánchez-Martos, F., Pulido-Bosch, A., Molina-Sánchez, L., & Vallejos-Izquierdo, A. (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Science of the Total Environment, 297(1–3), 43–58.CrossRefGoogle Scholar
  31. Santos, I. R., Burnett, W. C., Misra, S., Suryaputra, I. G. N. A., Chanton, J. P., Dittmar, T., et al. (2011). Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping. Chemical Geology, 287(1–2), 114–123.CrossRefGoogle Scholar
  32. Saxholt, E., Christensen, A. T., Møller, A., Hartkopp, H. B., Hess Ygil, K., Hels, O. H. (2008). Danish Food Composition Databank. In ed. 7.01, Department of Nutrition, National Food Institute, Technical University of Denmark.Google Scholar
  33. Truesdale, V. W., Danielssen, D. S., & Waite, T. J. (2003). Summer and winter distributions of dissolved iodine in the Skagerrak. Estuarine, Coastal and Shelf Science, 57(4), 701–713.CrossRefGoogle Scholar
  34. Whitehead, D. C. (1984). The distribution and transformations of iodine in the environment. Environment International, 10(4), 321–339. doi: 10.1016/0160-4120(84)90139-9.CrossRefGoogle Scholar
  35. WHO. (2007). Iodine deficiency in Europe: A continuing public health problem. In M. Andersson, B. de Benoist, I. Darnton-Hill, & F. Delange (Eds.), (pp. 1–86). France: World Health Organization, UNICEF.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Denitza Dimitrova Voutchkova
    • 1
    • 2
  • Søren Munch Kristiansen
    • 1
  • Birgitte Hansen
    • 2
  • Vibeke Ernstsen
    • 3
  • Brian Lyngby Sørensen
    • 2
  • Kim H. Esbensen
    • 3
    • 4
  1. 1.Department of GeoscienceAarhus UniversityAarhus CDenmark
  2. 2.Geological Survey of Denmark and Greenland (GEUS)HøjbjergDenmark
  3. 3.Geological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  4. 4.ACABS Research GroupAalborg UniversityEsbjergDenmark

Personalised recommendations