Advertisement

Environmental Geochemistry and Health

, Volume 36, Issue 6, pp 1165–1190 | Cite as

RETRACTED ARTICLE: Release, deposition and elimination of radiocesium (137Cs) in the terrestrial environment

  • Muhammad Aqeel AshrafEmail author
  • Ayesha Masood Khan
  • Mushtaq Ahmad
  • Shatirah Akib
  • Khaled S. Balkhair
  • Nor Kartini Abu Bakar
Review Paper

Abstract

Radionuclide contamination in terrestrial ecosystems has reached a dangerous level. The major artificial radionuclide present in the environment is 137Cs, which is released as a result of weapon production related to atomic projects, accidental explosions of nuclear power plants and other sources, such as reactors, evaporation ponds, liquid storage tanks, and burial grounds. The release of potentially hazardous radionuclides (radiocesium) in recent years has provided the opportunity to conduct multidisciplinary studies on their fate and transport. Radiocesium’s high fission yield and ease of detection made it a prime candidate for early radio-ecological investigations. The facility setting provides a diverse background for the improved understanding of various factors that contribute toward the fate and transfer of radionuclides in the terrestrial ecosystem. In this review, we summarize the significant environmental radiocesium transfer factors to determine the damaging effects of radiocesium on terrestrial ecosystem. It has been found that 137Cs can trace the transport of other radionuclides that have a high affinity for binding to soil particles (silts and clays). Possible remedial methods are also discussed for contaminated terrestrial systems. This review will serve as a guideline for future studies of the fate and transport of 137Cs in terrestrial environments in the wake of the Fukushima Nuclear Power Plant disaster in 2011.

Keywords

Radionuclide Cesium Transfer Nuclear power plants Contamination Bioaccumulation 

Notes

Acknowledgments

This research is supported by High Impact Research MoE Grant UM.C/625/1/HIR/MoE/SC/04 from the Ministry of Education Malaysia. Thanks also for the support by UMRG (RG257-13AFR) and FRGS (FP038-2013B).

Conflict of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the paper.

References

  1. Al-Masri, M. S. (2006). Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region. Journal of Environmental Radioactivity, 86(2), 187–198.CrossRefGoogle Scholar
  2. Antonio, M. R., Dietz, M. L., Jensen, M. P., Soderholm, L., & Horwitz, E. P. (1997). EXAFS studies of cesium complexation by dibenzo-crown ethers in tri-n-butyl phosphate. Inorganica Chimica Acta, 255, 13–20.CrossRefGoogle Scholar
  3. Aoyama, M., Fukasawa, M., Hirose, K., Hamajima, Y., Kawano, T., Povinec, P. P., et al. (2011). Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises). Progress in Oceanography, 89, 7–16.CrossRefGoogle Scholar
  4. Aoyama, M., & Hirose, K. (2008). Radiometric determination of anthropogenic radionuclides in seawater. In P. Povinec (Ed.), Radioactivity in the environment (pp. 137–162). Amsterdam: Elsevier.Google Scholar
  5. Ashraf, M. A., Rehman, M. A., Maah, M. J., & Yusoff, I. (2013). Cesium-137: Radio-chemistry, fate and transport, remediation and future concerns. Critical Reviews in Environmental Science and Technology. doi: 10.1080/10643389.2013.790753.
  6. Balonov, M., Barnett, C., Belli, M., Beresford, N., Berkovsky, V., Bossew, P., et al. (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environment. Vienna: IAEA.Google Scholar
  7. Ben-Asher, J. (2011). Regulating in a radioactive world: The 1593 FDA and radionuclide contamination. Harvard student paper. http://nrs.harvard.edu/urn-3:HUL.InstRepos:8789611.
  8. Beresford, N. A., Broadley, M. R., Howard, B. J., Barnett, C. L., & White, P. J. (2004). Estimating radionuclide transfer to wild species—Data requirements and availability for terrestrial ecosystems. Journal of Radiological Protection, 24(4A), A89.CrossRefGoogle Scholar
  9. Beresford, N. A., & Vives i Batlle, J. (2013). Estimating the biological half-life for radionuclides in homoeothermic vertebrates: A simplified allometric approach. Radiation and Environmental Biophysics, 52(4), 505–511.CrossRefGoogle Scholar
  10. Beresford, N. A., Yankovich, T. L., Wood, M. D., Fesenko, S., Andersson, P., Muikku, M., et al. (2013). A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium. Science of the Total Environment, 463–464, 284–292.CrossRefGoogle Scholar
  11. Bolsunovsky, A., & Dementyev, D. (2011). Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident. Journal of Environmental Radioactivity, 102(11), 1062–1064.CrossRefGoogle Scholar
  12. Bossew, P., Lettner, H., Hubmer, A., Erlinger, C., & Gastberger, M. (2007). Activity ratios of 137Cs, 90Sr and 239 + 240Pu in environmental samples. Journal of Environmental Radioactivity, 97(1), 5–19.CrossRefGoogle Scholar
  13. Bowyer, T. W., Biegalski, S. R., Cooper, M., Eslinger, P. W., Haas, D., Hayes, J. C., et al. (2011). Elevated radioxenon detected remotely following the Fukushima nuclear accident. Journal of Environmental Radioactivity, 102(7), 681–687.CrossRefGoogle Scholar
  14. Brandt, J., Christensen, J. H., & Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, 2, 397–417.CrossRefGoogle Scholar
  15. Brechignac, F., Polikarpov, G., Oughton, D. H., Hunter, G., Alexakhin, R., Zhu, Y. G., et al. (2003). Protection of the environment in the 21st century: Radiation protection of the biosphere including humankind. Statement of the International Union of Radioecology. Journal of Environmental Radioactivity, 70(3), 155–159.CrossRefGoogle Scholar
  16. Brenner, D. J., Doll, R., Goodhead, D. T., Hall, E. J., Land, C. E., Little, J. B., et al. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13761–13766.CrossRefGoogle Scholar
  17. Brito, J. C., Godinho, R., Martinez-Freiria, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., et al. (2014). Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biological Reviews of the Cambridge Philosophical Society, 89(1), 215–231.CrossRefGoogle Scholar
  18. Brown, J. E., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D., Pröhl, G., et al. (2008). The ERICA tool. Journal of Environmental Radioactivity, 99(9), 1371–1383.CrossRefGoogle Scholar
  19. Butler, D. (2011). First estimates of total radioactive cesium and iodine emissions from Fukushima Plant. Nature Newsblog. http://blogs.nature.com/news/2011/03/firstestimatesofradioactive.html.
  20. Chiang, P. N., Wang, M. K., Huang, P. M., Wang, J. J., & Chiu, C. Y. (2010). Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. Journal of Environmental Radioactivity, 101(6), 472–481.CrossRefGoogle Scholar
  21. Chino, M., Ishikawa, H., & Yamazawa, H. (1993). SPEEDI and WSPEEDI: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident. Radiation Protection Dosimetry, 50, 145–152.Google Scholar
  22. Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., & Yamazawa, H. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. Journal of Nuclear Science and Technology, 48(7), 1129–1134.CrossRefGoogle Scholar
  23. Cid, A. S., Anjos, R. M., Zamboni, C. B., Velasco, H., Macario, K., Rizzotto, M., et al. (2013). Temporal evolution of (1)(3)(7)Cs(+), K(+) and Na(+) in fruits of South American tropical species. The Science of the Total Environment, 444, 115–120.CrossRefGoogle Scholar
  24. Cyranoski, D., & Brumfiel, G. (2011). Fukushima impact is still hazy. Nature, 477(7363), 139–140.CrossRefGoogle Scholar
  25. Davoine, X., & Bocquet, M. (2007). Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmospheric Chemistry and Physics, 7, 1549–1564.CrossRefGoogle Scholar
  26. De Hoop, L., Huijbregts, M. A. J., Schipper, A. M., Veltman, K., De Laender, F., Viaene, K. P. J., et al. (2013). Modelling bioaccumulation of oil constituents in aquatic species. Marine Pollution Bulletin, 76(1–2), 178–186.CrossRefGoogle Scholar
  27. Devell, L., Guntay, S., & Powers, D. A. (1996). The Chernobyl reactor accident source term: Development of a consensus view. Paris: OECD Nuclear Energy Agency.Google Scholar
  28. Diaz Leon, J., Jaffe, D. A., Kaspar, J., Knecht, A., Miller, M. L., Robertson, R. G. H., et al. (2011). Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. Journal of Environmental Radioactivity, 102(11), 1032–1038.CrossRefGoogle Scholar
  29. Długosz-Lisiecka, M., & Bem, H. (2012). Determination of the mean aerosol residence times in the atmosphere and additional 210po input on the base of simultaneous determination of 7be, 22na, 210pb, 210bi and 210po in urban air. Journal of Radioanalytical and Nuclear Chemistry, 293, 135–140.CrossRefGoogle Scholar
  30. Dodge, C. J. X., & Francis, A. J. (1994). Photodegradation of uranium citrate complex with uranium recovery. Environmental Science and Technology, 28(2), 1300–1306.CrossRefGoogle Scholar
  31. Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides? Journal of Environmental Radioactivity, 99(11), 1736–1745.CrossRefGoogle Scholar
  32. Dupré de Boulois, H., Joner, E. J., Leyval, C., Jakobsen, I., Chen, B. D., Roos, P., et al. (2008). Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. Journal of Environmental Radioactivity, 99(5), 785–800.CrossRefGoogle Scholar
  33. Eckerman, K. F., Wolbarst, A. B., & Richardson, A. C. B. (1988). Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11. Washington, DC: EPA.Google Scholar
  34. Ellis, E. C. (2013). Sustaining biodiversity and people in the world’s anthropogenic biomes. Current Opinion in Environmental Sustainability, 5(3), 368–372.CrossRefGoogle Scholar
  35. Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., & Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity, 111, 18–27.CrossRefGoogle Scholar
  36. Galmarini, S., Stohl, A., & Wotawa, G. (2011). Fund experiments on atmospheric hazards. Nature, 473(7347), 285.CrossRefGoogle Scholar
  37. Gherardi, F., & Padilla, D. K. (2013). Climate-induced changes in human behavior and range expansion of freshwater species. Ethology Ecology & Evolution, 26(1), 86–90.CrossRefGoogle Scholar
  38. Gjelsvik, R., & Steinnes, E. (2013). Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway. Journal of Environmental Radioactivity, 126, 99–103.CrossRefGoogle Scholar
  39. Gyuricza, V., Dupré de Boulois, H., & Declerck, S. (2010). Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity, 101(6), 482–487.CrossRefGoogle Scholar
  40. Hagan, L. (1977). Bibliography on atomic energy levels and spectra, July 1971 through June 1975 (Vol. 363). Washington, DC: US Dept. of Commerce, National Bureau of Standards.Google Scholar
  41. Haritonidis, S., & Malea, P. (1995). Seasonal and local variation of Cr, Ni and Co concentrations in Ulva rigida C. Agardh and Enteromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Environmental Pollution, 89(3), 319–327.CrossRefGoogle Scholar
  42. Hinton, T. G., Garnier-Laplace, J., Vandenhove, H., Dowdall, M., Adam-Guillermin, C., Alonzo, F., et al. (2013). An invitation to contribute to a strategic research agenda in radioecology. Journal of Environmental Radioactivity, 115, 73–82.CrossRefGoogle Scholar
  43. Hirose, K. (2012). 2011 Fukushima Dai-ichi nuclear power plant accident: Summary of regional radioactive deposition monitoring results. Journal of Environmental Radioactivity, 111, 13–17.CrossRefGoogle Scholar
  44. Hirose, K., Igarashi, Y., & Aoyama, M. (2008). Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Applied Radiation and Isotopes, 66(11), 1675–1678.CrossRefGoogle Scholar
  45. Hohenemser, C., & Renn, O. (1988). Shifting public perceptions of nuclear risk: Chernobyl’s other legacy. Environment: Science and Policy for Sustainable Development, 30(3), 4–45.CrossRefGoogle Scholar
  46. Hou, X. L., Fogh, C. L., Kucera, J., Andersson, K. G., Dahlgaard, H., & Nielsen, S. P. (2003). Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Science of the Total Environment, 308(1–3), 97–109.CrossRefGoogle Scholar
  47. International Atomic Energy Agency. (2000). Report of the specialists’ meeting on environmental protection from the effects of ionizing radiation: International perspectives. Ref. 723-J9-SP-1114.2. Vienna, Austria: IAEA.Google Scholar
  48. International Atomic Energy Agency. (2001a). Present and future environmental impact of the Chernobyl accident. Vienna: IAEA.Google Scholar
  49. International Atomic Energy Agency. (2001b). Report of the Second FAO, “The classification of soil systems on the basis of transfer factors of radionuclide from soil to reference plants”. Vienna: IAEA.Google Scholar
  50. International Atomic Energy Agency. (2009). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. Vienna: IAEA.Google Scholar
  51. International Atomic Energy Agency. (2011). Please add title. Vienna: Ministry of Education, Culture, Sports, Science and Technology.Google Scholar
  52. Japanese Ministry of Education Culture Sports Science and Technology. (2011a). Environmental radiation database. Tokyo: MEXT.Google Scholar
  53. Japanese Ministry of Education Culture Sports Science and Technology. (2011b). Reading of radioactivity level in fallout by prefecture. Tokyo: MEXT.Google Scholar
  54. Japanese Ministry of Education Culture Sports Science and Technology. (2011c). Readings of environmental radioactivity level by prefecture. Tokyo: MEXT.Google Scholar
  55. Japanese Ministry of Education Culture Sports Science and Technology. (2011d). Readings of sea area monitoring. Tokyo: MEXT.Google Scholar
  56. Japanese Ministry of Education Culture Sports Science and Technology. (2011e). Results of airborne monitoring by MEXT and the U.S. Department of Energy. Tokyo: MEXT.Google Scholar
  57. Japanese Ministry of Education Culture Sports Science and Technology. (2011f). Results of the 2nd airborne monitoring by the MEXT and U.S. Department of Energy. Tokyo: MEXT.Google Scholar
  58. Japanese Ministry of Education Culture Sports Science and Technology. (2012). Add the title. MEXT: In. Tokyo.Google Scholar
  59. Jargin, S. V. (2010). Overestimation of Chernobyl consequences: Poorly substantiated information published. Radiation and Environmental Biophysics, 49(4), 743–745.CrossRefGoogle Scholar
  60. Jasiulionis, R., & Rozkov, A. (2007). 137Cs activity concentration in the ground-level air in the Ignalina NPP region. Lithuanian Journal of Physics, 47(2), 195–202.CrossRefGoogle Scholar
  61. Jasiulionis, R., Rozkov, A., & Vycinas, L. (2006). Radionuclides in the ground-level air and deposition in the Ignalina NPP region during 2002–2005. Lithuanian Journal of Physics, 46, 101–108.CrossRefGoogle Scholar
  62. Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J.-I., Ikarashi, S., Nishimura, T., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proceedings of the National Academy of Sciences, 108(49), 19526–19529.CrossRefGoogle Scholar
  63. Kitajima, A., Ogawa, H., Kobayashi, T., Kawasaki, T., Kawatsu, Y., Kawamoto, T., et al. (2014). Monitoring low-radioactivity caesium in Fukushima waters. Environmental Science: Processes & Impacts, 16(1), 28–32.Google Scholar
  64. Koarashi, J., Atarashi-Andoh, M., Matsunaga, T., Sato, T., Nagao, S., & Nagai, H. (2012). Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Science of the Total Environment, 431, 392–401.CrossRefGoogle Scholar
  65. Koizumi, A., Harada, K., Niisoe, T., Adachi, A., Fujii, Y., Hitomi, T., et al. (2012). Preliminary assessment of ecological exposure of adult residents in Fukushima Prefecture to radioactive cesium through ingestion and inhalation. Environmental Health and Preventive Medicine, 17(4), 292–298.CrossRefGoogle Scholar
  66. Lee, C. P., Kuo, Y. M., Tsai, S. C., Wei, Y. Y., Teng, S. P., & Hsu, C. N. (2008). Numerical analysis for characterizing the sorption/desorption of cesium in crushed granite. Journal of Radioanalytical and Nuclear Chemistry, 275(2), 343–349.CrossRefGoogle Scholar
  67. Lide, D. R. (2004). CRC handbook of chemistry and physics 2004–2005: A ready-reference book of chemical and physical data. Boca Raton, FL: CRC Press.Google Scholar
  68. Lozano, R. L., Hernández-Ceballos, M. A., Adame, J. A., Casas-Ruíz, M., Sorribas, M., Miguel, E. G. S., et al. (2011). Radioactive impact of Fukushima accident on the Iberian Peninsula: Evolution and plume previous pathway. Environment International, 37(7), 1259–1264.CrossRefGoogle Scholar
  69. Maderich, V., Bezhenar, R., Heling, R., de With, G., Jung, K. T., Myoung, J. G., et al. (2013). Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: Application to the Fukushima Dai-ichi accident. Journal of Environmental Radioactivity, 131(1), 4–18.Google Scholar
  70. Manolopoulou, M., Vagena, E., Stoulos, S., Ioannidou, A., & Papastefanou, C. (2011). Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity, 102(8), 796–797.CrossRefGoogle Scholar
  71. McMichael, P. (2013). Food Sovereignty: A critical dialogue. International Institute of Social Studies (ISS),Hague.Google Scholar
  72. Medici, F. (2001). The IMS radionuclide network of the CTBT. Radiation Physics and Chemistry, 61, 689–690.CrossRefGoogle Scholar
  73. Mihaela, T., Otto, K., & Ovidiu, T. (2012). Naturally occurring 137Cs, 90Sr and 226Ra radionuclides in raw milk in the Sibiu province of Romania. International Journal of Dairy Technology, 65(4), 511–515.CrossRefGoogle Scholar
  74. Ministry of Agriculture Forestry and Fisheries. (2011). A point of view on planting rice plant. Tokyo: MAFF.Google Scholar
  75. Ministry of Land Infrastructure Transport and Tourism. (2011). Soil map of Japan. http://tochi.mlit.go.jp/tockok/tochimizu/F3/ZOOMA/0719/index.html.
  76. Moller, A. P., Hagiwara, A., Matsui, S., Kasahara, S., Kawatsu, K., Nishiumi, I., et al. (2012). Abundance of birds in Fukushima as judged from Chernobyl. Environmental Pollution, 164, 36–39.CrossRefGoogle Scholar
  77. Moller, A. P., Nishiumi, I., Suzuki, H., Ueda, K., & Mousseau, T. A. (2013). Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecological Indicators, 24, 75–81.CrossRefGoogle Scholar
  78. Morino, Y., Ohara, T., & Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophysical Research Letters, 38(7), L00G11.CrossRefGoogle Scholar
  79. Mucina, L., Daniel, G., Stephenson, G., Boonzaier, I., van Niekerk, A., Barret, M., et al. (2013). Floristic-ecological mapping in the Northern Kimberley. Western Australia: Field survey methods and mapping protocols.Google Scholar
  80. Nakanishi, T., Matsunaga, T., Koarashi, J., & Atarashi-Andoh, M. (2014). 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 128, 9–14.CrossRefGoogle Scholar
  81. Niedrée, B. (2013). Effects of 137Cs and 90Sr on structure and functional aspects of the microflora in agricultural used soils. Julich: Forschungszentrum Jülich.Google Scholar
  82. Nimis, P. L. (1996). Radiocesium in plants of forest ecosystems. Studia Geobotanica, 15(3–49), 3–38.Google Scholar
  83. Norman, E. B., Angell, C. T., & Chodash, P. A. (2011). Observations of fallout from the Fukushima reactor accident in San Francisco Bay area rainwater. PLoS ONE, 6(9), e24330.CrossRefGoogle Scholar
  84. Okumura, T., Tamura, K., Fujii, E., Yamada, H., & Kogure, T. (2014). Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy, 63(1), 65–72.CrossRefGoogle Scholar
  85. Paasikallio, A., Rantavaara, A., & Sippola, J. (1994). The transfer of cesium-137 and strontium-90 from soil to food crops after the Chernobyl accident. Science of the Total Environment, 155(2), 109–124.CrossRefGoogle Scholar
  86. Peterson, D., Wolken, J., Hollingsworth, T., Giardina, C., Littell, J., Joyce, L., et al. (2014). Regional highlights of climate change. In D. L. Peterson, J. M. Vose, & T. Patel-Weynand (Eds.), Climate change and United States forests (Vol. 57, pp. 113–148)., Advances in global change research Dordrecht: Springer.CrossRefGoogle Scholar
  87. Pittauerova, D., Hettwig, B., & Fischer, H. W. (2011). Fukushima fallout in Northwest German environmental media. Journal of Environmental Radioactivity, 102(9), 877–880.CrossRefGoogle Scholar
  88. Povinec, P. P., Sýkora, I., Holý, K., Gera, M., Kováčik, A., & Brest’áková, L. (2012). Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident—A comparison with global fallout and the Chernobyl accident. Journal of Environmental Radioactivity, 114, 81–88.CrossRefGoogle Scholar
  89. Pröhl, G. (2009). Interception of dry and wet deposited radionuclides by vegetation. Journal of Environmental Radioactivity, 100(9), 675–682.CrossRefGoogle Scholar
  90. Real, J., Persin, F., & Camarasa-Claret, C. (2002). Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces. Journal of Environmental Radioactivity, 62(1), 1–15.CrossRefGoogle Scholar
  91. Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environment Quality, 19(2), 215.CrossRefGoogle Scholar
  92. Rochette, P., van Bochove, E., Prévost, D., Angers, D. A., Côté, D., & Bertrand, N. (2000). Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year. Soil Science Society of America Journal, 64(4), 1396.CrossRefGoogle Scholar
  93. Sanzharova, N., Shubina, O., Vandenhove, H., Olyslaegers, G., Fesenko, S., Shang, Z. R., et al. (2009). Root uptake: Temperate environment. Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments (pp. 139–206). Vienna: IAEA.Google Scholar
  94. Shaw, G. (2007). Radionuclides in forest ecosystems. In G. Shaw (Ed.), Radioactivity in the enviornment (pp. 127–155). Amsterdam: Elsevier.Google Scholar
  95. Shcheglov, A. I., Tsvetnova, O. B., & Klyashtorin, A. (2013). The fate of Cs-137 in forest soils of Russian Federation and Ukraine contaminated due to the Chernobyl accident. Journal of Geochemical Exploration.Google Scholar
  96. Simpson, M. F., & Law, J. D. (2013). Reprocessing of nuclear fuel. In N. Tsoulfanidis (Ed.), Nuclear energy (pp. 153–173). New York: Springer.CrossRefGoogle Scholar
  97. Sinclair, L. E., Seywerd, H. C., Fortin, R., Carson, J. M., Saull, P. R., Coyle, M. J., et al. (2011). Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident. Journal of Environmental Radioactivity, 102(11), 1018–1023.CrossRefGoogle Scholar
  98. Sokolov, N. V., Grodsinsky, D. M., & Sorochinsky, B. V. (2001). How does low does chronic irradiation under the condition of 10 km Chernobyl exclusion zone influence on processes of seed aging? In Fifteen years after the Chernobyl accident: Lessons learned (p. 117). Kiev.Google Scholar
  99. Steiner, M., Linkov, I., & Yoshida, S. (2002). The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. Journal of Environmental Radioactivity, 58(2–3), 217–241.CrossRefGoogle Scholar
  100. Steinhauser, G., Merz, S., Hainz, D., & Sterba, J. (2013). Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environmental Science and Pollution Research, 20(4), 2527–2534.CrossRefGoogle Scholar
  101. Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.CrossRefGoogle Scholar
  102. Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., et al. (2011). Xenon-133 and caesium-137 releases into the atmosphere from Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics, 11, 28319–28394.CrossRefGoogle Scholar
  103. Strand, P., Brown, J. E., Drozhko, E., Mokrov, Y., Salbu, B., Oughton, D., et al. (1999). Biogeochemical behaviour of 137Cs and 90Sr in the artificial reservoirs of Mayak PA, Russia. Science of the Total Environment, 241(1–3), 107–116.CrossRefGoogle Scholar
  104. Szefer, P. (2002). Metal pollutants and radionuclides in the 1982 Baltic Sea-an overview. Oceanologia, 44(2), 129–178.Google Scholar
  105. Tagami, K., Uchida, S., Ishii, N., & Zheng, J. (2013). Estimation of Te-132 distribution in Fukushima Prefecture at the early stage of the Fukushima Daiichi nuclear power plant reactor failures. Environmental Science and Technology, 47(10), 5007–5012.CrossRefGoogle Scholar
  106. Taira, T., & Hatoyama, Y. (2011). Nuclear energy: Nationalize the Fukushima Daiichi atomic plant. Nature, 480(7377), 313–314.CrossRefGoogle Scholar
  107. Tateda, Y., Tsumune, D., & Tsubono, T. (2013). Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. Journal of Environmental Radioactivity, 124, 1–12.CrossRefGoogle Scholar
  108. Tositti, L., Brattich, E., Cinelli, G., Previti, A., & Mostacci, D. (2012). Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event. Journal of Environmental Radioactivity, 114, 105–112.CrossRefGoogle Scholar
  109. Tracy, B. L., Carini, F., Barabash, S., Berkovskyy, V., Brittain, J. E., Chouhan, S., et al. (2013). The sensitivity of different environments to radioactive contamination. Journal of Environmental Radioactivity, 122, 1–8.CrossRefGoogle Scholar
  110. Tsukada, H., Hisamatsu, S., & Inaba, J. (2003). Transfer of 137Cs and stable Cs in soil-grass-milk pathway in Aomori, Japan. Journal of Radioanalytical and Nuclear Chemistry, 255, 455–458.CrossRefGoogle Scholar
  111. Tyler, A. N., Cartier, S., Davidson, D. A., Long, D. J., & Tipping, R. (2001). The extent and significance of bioturbation on Cs-137 distribution in upland soils. Catena, 43, 81–99.CrossRefGoogle Scholar
  112. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. New York: United Nations.Google Scholar
  113. Valentin, J. (2003). A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91. Annals of the ICRP, 33(3), 207–266.CrossRefGoogle Scholar
  114. Vallés, I., Camacho, A., Ortega, X., Serrano, I., Blázquez, S., & Pérez, S. (2009). Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). Journal of Environmental Radioactivity, 100(2), 102–107.CrossRefGoogle Scholar
  115. Velasco, H., Cid, A. S., Anjos, R. M., Zamboni, C. B., Rizzotto, M., Valladares, D. L., et al. (2012). Variability of 137Cs and 40K soil-to-fruit transfer factor in tropical lemon trees during the fruit development period. Journal of Environmental Radioactivity, 104, 64–70.CrossRefGoogle Scholar
  116. Vinichuk, M., Taylor, A. F. S., Rosén, K., & Johanson, K. J. (2010). Accumulation of potassium, rubidium and caesium (133Cs and 137Cs) in various fractions of soil and fungi in a Swedish forest. Science of the Total Environment, 408(12), 2543–2548.CrossRefGoogle Scholar
  117. Wampler, J. M., Krogstad, E. J., Elliott, W. C., Kahn, B., & Kaplan, D. I. (2012). Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environmental Science and Technology, 46(7), 3837–3843.CrossRefGoogle Scholar
  118. Wells, T., & Hancock, G. (2014). Comparison of vertical transport of 137Cs and organic carbon in agricultural cracking soils. Geoderma, 214–215, 228–238.CrossRefGoogle Scholar
  119. Wicker, W. F., & Schultz, V. (1982). Radioecology: Nuclear energy and environment (Vol. 1, pp. 153–156). Boca Raton, FL: CRC Press.Google Scholar
  120. Willey, N. (2010). Phylogeny can be used to make useful predictions of soil-to-plant transfer factors for radionuclides. Radiation and Environmental Biophysics, 49(4), 613–623.CrossRefGoogle Scholar
  121. Wood, M. D., Beresford, N. A., Howard, B. J., & Copplestone, D. (2013). Evaluating summarised radionuclide concentration ratio datasets for wildlife. Journal of Environmental Radioactivity, 126, 314–325.CrossRefGoogle Scholar
  122. Yablokov, A. V., Nesterenko, V. B., Nesterenko, A. V., & Sherman-Nevinger, J. D. (2010). Chernobyl: Consequences of the catastrophe for people and the environment. Hoboken, NJ: Wiley.Google Scholar
  123. Yan, D., Zhao, Y., Lu, A., Wang, S., Xu, D., & Zhang, P. (2013). Effects of accompanying anions on cesium retention and translocation via droplets on soybean leaves. Journal of Environmental Radioactivity, 126, 232–238.CrossRefGoogle Scholar
  124. Yang, L., Zhu, L., & Liu, Z. (2011). Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere, 83(6), 806–814.CrossRefGoogle Scholar
  125. Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 19530–19534.CrossRefGoogle Scholar
  126. Zaborska, A., Winogradow, A., & Pempkowiak, J. (2014). Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. Journal of Environmental Radioactivity, 127, 11–25.CrossRefGoogle Scholar
  127. Zalewska, T., & Lipska, J. (2006). Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000–2004. Journal of Environmental Radioactivity, 91(1–2), 1–14.CrossRefGoogle Scholar
  128. ZAMG. (2011). Accident in the Japanese NPP Fukushima: Spread of radioactivity/first source estimates from CTBTO data show large source terms at the beginning of the accident/weather currently not favourable/low level radioactivity meanwhile observed over U.S. East Coast and Hawaii. Wien: ZAMG.Google Scholar
  129. Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., et al. (2012). Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Reports, 2, 304.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Muhammad Aqeel Ashraf
    • 1
    Email author
  • Ayesha Masood Khan
    • 1
  • Mushtaq Ahmad
    • 2
  • Shatirah Akib
    • 3
  • Khaled S. Balkhair
    • 4
  • Nor Kartini Abu Bakar
    • 5
  1. 1.Department of Geology, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Plant SciencesQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Department of Civil EngineeringUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of Hydrology and Water Resources ManagementKing Abdul Aziz UniversityJeddahSaudi Arabia
  5. 5.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations