Environmental Geochemistry and Health

, Volume 36, Issue 4, pp 713–734 | Cite as

A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

  • Pablo Higueras
  • Roberto Oyarzun
  • Joze Kotnik
  • José María Esbrí
  • Alba Martínez-Coronado
  • Milena Horvat
  • Miguel Angel López-Berdonces
  • Willians Llanos
  • Orlando Vaselli
  • Barbara Nisi
  • Nikolay Mashyanov
  • Vladimir Ryzov
  • Zdravko Spiric
  • Nikolay Panichev
  • Rob McCrindle
  • Xinbin Feng
  • Xuewu Fu
  • Javier Lillo
  • Jorge Loredo
  • María Eugenia García
  • Pura Alfonso
  • Karla Villegas
  • Silvia Palacios
  • Jorge Oyarzún
  • Hugo Maturana
  • Felicia Contreras
  • Melitón Adams
  • Sergio Ribeiro-Guevara
  • Luise Felipe Niecenski
  • Salvatore Giammanco
  • Jasna Huremović
Original Paper

Abstract

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \)), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m−3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m−3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m−3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.

Keywords

Gaseous elemental mercury Atmospheric pollution Mining districts Cities Pristine locations Volcanos Hazards Risks 

References

  1. Acosta, J. A., Martínez-Martínez, S., Faz, A., Millán, R., Muñoz, M. A., Terán, T., et al. (2011). Characterization of the potential mercury contamination in the Apolobamba gold mining area, Bolivia. Spanish Journal of Soil Science, 1, 86–99.Google Scholar
  2. Aiuppa, A., Bagnato, E., Witt, M. L. I., Mather, T. A., Parello, F., Pyle, D. M., et al. (2007). Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophysical Research Letters, 34, L21307.CrossRefGoogle Scholar
  3. Al-Batanony, M. A., Abdel-Rasul, G. M., Abu-Salem, M. A., Al-Dalatony, M. M., & Allam, H. K. (2013). Occupational exposure to mercury among workers in a fluorescent lamp factory, Quisna industrial zone, Egypt. International Journal of Occupational & Environmental Medicine, 4, 149–156.Google Scholar
  4. Almeida, M. D., Marins, R. V., Paraquettia, H. H. M., & Lacerda, L. D. (2008). Methodology optimization and application for measurement of gaseous elemental mercury in the Amazon atmosphere. Journal of the Brazilian Chemical Society, 19, 1290–1297.CrossRefGoogle Scholar
  5. Amon, R. M. W., & Benner, R. (1996). Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta, 60, 1783–1792.CrossRefGoogle Scholar
  6. ATSDR/EPA National Mercury. Cleanup Policy Workgroup. Action Levels For Elemental Mercury Spills. March 22, 2012. http://www.atsdr.cdc.gov/emergency_response/Action_Levels_for_Elemental_Mercury_Spills_2012.pdf. Accessed 28 June 2013.
  7. Aymaz, S., Gross, O., Krakamp, B., Ortmann, M., Dienes, H. P., & Weber, M. (2001). Membranous nephropathy from exposure to mercury in the fluorescent-tube-recycling industry. Nephrology, Dialysis, Transplantation, 16, 2253–2255.CrossRefGoogle Scholar
  8. Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A. K., & Wibetoe, G. (2008). Springtime depletion of mercury in the European Arctic as observed at Svalbard. Science of the Total Environment, 304, 43–51.CrossRefGoogle Scholar
  9. Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. International Journal of Environmental and Public Health. Article no. 460508.Google Scholar
  10. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., et al. (2010a). Health assessment of artisanal gold miners in Indonesia. Science of the Total Environment, 408, 713–725.CrossRefGoogle Scholar
  11. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Tesha, A., Drasch, K., Roider, G., et al. (2010b). Health assessment of artisanal gold miners in Tanzania. Science of the Total Environment, 408, 796–805.CrossRefGoogle Scholar
  12. Boudin, L. B. (1952). Seditious doctrines and the clear and present danger rule. Virginia Law Review, 38, 143–186.CrossRefGoogle Scholar
  13. Brown, R. J. C., Pirrone, N., van Hoek, C., Horvat, M., Kotnik, J., Wangberg, I., et al. (2010a). Standardisation of a European measurement method for the determination of mercury in deposition: Results of the field trial campaign and determination of a measurement uncertainty and working range. Accreditation and Quality Assurance, 15, 359–366.CrossRefGoogle Scholar
  14. Brown, R. J. C., Pirrone, N., Van Hoek, C., Sprovieri, F., Fernandez, R., & Toté, K. (2010b). Standardisation of a European measurement method for the determination of total gaseous mercury: Results of the field trial campaign and determination of a measurement uncertainty and working range. Journal of Environmental Monitoring, 12(3), 689–695.CrossRefGoogle Scholar
  15. Carpi, A. (1997). Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, Air, and Soil pollution, 98, 241–254.Google Scholar
  16. Chan, H. M., & Egeland, G. M. (2004). Fish consumption, mercury exposure, and heart diseases. Nutrition Reviews, 62, 68–72.CrossRefGoogle Scholar
  17. Clark, S. (1986). Preservation of herbarium specimens: an archive conservators approach. Taxon, 35, 675–681.CrossRefGoogle Scholar
  18. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609–662.CrossRefGoogle Scholar
  19. Cole, A. S., Steffen, A., Pfaffhuber, K. A., Berg, T., Pilote, M., Poissant, L., et al. (2013). Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmospheric Chemistry and Physics, 13, 1535–1545.CrossRefGoogle Scholar
  20. Dai, Z. H., Feng, X: B., Sommar, J., & Fu, X. W. (2012). Spatial distribution of mercury deposition fluxex in Wanshan Hg mining area, Guizhu province, China. Atmospheric Chemistry and Physics, 12, 6207–6218.CrossRefGoogle Scholar
  21. DEFRA (2010). The mercury export and data (enforcement) regulations 2010: guidance notes, Department for Environment, Food and Rural Affairs (United Kingdom), http://archive.defra.gov.uk/environment/quality/chemicals/documents/mercury-export-data-regs.pdf. Accessed 25 Feb 2013.
  22. Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J., & Spain, T. G. (2011). Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009. Atmospheric Environment, 45, 3475–3480.CrossRefGoogle Scholar
  23. Echeverria, D., Heyer, N. J., Martin, M. D., Naleway, C. A., Woods, J. S., & Bittner, A. C., Jr. (1995). Behavioral effects of low-level exposure to Hg° among dentists. Neurotoxicology and Teratology, 17, 161–168.CrossRefGoogle Scholar
  24. EN 15852. (2010). Ambient air quality—Standard method for the determination of total gaseous mercury. http://www.en-standard.eu/csn-en-15852-ambient-air-quality-standard-method-for-the-determination-of-total-gaseous-mercury/. Accessed 28 June 2013.
  25. Engle, M. A., & Gustin, M. S. (2002). Scaling of atmospheric mercury emissions from three naturally enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California. Science of the Total Environment, 290, 91–104.CrossRefGoogle Scholar
  26. European Standards. (2013). CSN EN 15852—Ambient air quality—Standard method for the determination of total gaseous mercury. http://www.en-standard.eu/en-15852-ambient-air-quality-standard-method-for-the-determination-of-total-gaseous-mercury. Accessed 25 Feb 2013.
  27. Feng, X., Foucher, D., Hintelmann, H., Yan, H., He, T., & Qiu, G. (2010). Tracing mercury contamination sources in sediments using mercury isotope compositions. Environmental Science and Technology, 44, 3363–3368.CrossRefGoogle Scholar
  28. Feng, X., Shang, L.,Wang, S., Tang, S., Zheng, W. (2004). Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research D: Atmospheres, 109(D03303), 1–9.Google Scholar
  29. Fernández-Patier, R., & Ramos-Díaz, M. C. (2012). Informe del Ejercicio de lntercomparación de Mercurio Gaseoso total en aire ambiente “IN SITU” (año 2011). Ined. Repport, Instituto de Salud Carlos III, Centro Nacional de Sanidad Ambiental, Área de Contaminación Atmosférica. Ministerio de Economía y Competitividad, España, 7 pp. In Spanish.Google Scholar
  30. Fu, X., Feng, X., Sommar, J., & Wang, S. (2012). A review of studies on atmospheric mercury in China. Science of the Total Environment, 421–422, 73–81.CrossRefGoogle Scholar
  31. Fu, X. W., Feng, X. B., & Zhang, H. (2011). Atmospheric total gaseous mercury concentration in Guiyang: measurements intercomparison with Lumex RA-915AM and Tekran 2537A. Chinese Journal of Ecology, 30, 939–943.Google Scholar
  32. Garcia-Sanchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Airborne total gaseous mercury and exposure in a Venezuelan mining area. International Journal of Environmental Health Research, 16, 361–373.CrossRefGoogle Scholar
  33. García-Sánchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environmental Geochemistry and Health, 28, 529–540.CrossRefGoogle Scholar
  34. Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., & Sholupov, S. E. (1997). Distribution of mercury in atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110.CrossRefGoogle Scholar
  35. Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of methylmercury: Environmental health research implications. Environmental Health Perspectives, 118, 1137–1145.CrossRefGoogle Scholar
  36. Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environment Science and Technology, 38, 4285–4292.CrossRefGoogle Scholar
  37. Gul Oz, S., Tozlu, M., Yalcin, S. S., Sozen, T., & Sain Guven, G. (2012). Mercury vapor inhalation and poisoning of a family. Inhalation Toxicology, 24, 652–658.CrossRefGoogle Scholar
  38. Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–71.CrossRefGoogle Scholar
  39. Hamdy, M. K., & Noyes, R. (1975). Formation of methyl mercury by bacteria. Applied Microbiology, 30, 424–432.Google Scholar
  40. Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. CRC Critical Reviews in Toxicology, 25, 1–24.CrossRefGoogle Scholar
  41. Health Canada (2009). Mercury. Environmental and Workplace Health, Health Canada Federal Department, http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/mercury-mercure/i-eng.php. Accessed 25 Feb 2013.
  42. HESIS (2008). Understanding toxic substances. Hazard Evaluation System and Information Service, California Department of Public Health, http://www.cdph.ca.gov/programs/hesis/Documents/introtoxsubstances.pdf.
  43. Higueras, P., Esbrí, J. M., Oyarzun, R., Llanos, W., Martínez-Coronado, A., Lillo, J., et al. (2013). Industrial and natural sources of gaseous elemental mercury in the Almadén District (Spain): An updated report on this issue after the cease of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research, 125, 197–208.CrossRefGoogle Scholar
  44. Higueras, P., Llanos, W., García, M. E., Millán, R., & Serrano, C. (2012). Mercury vapours emissions from the Ingenios in Potosí (Bolivia). Journal of Geochemical Exploration, 116, 1–7.CrossRefGoogle Scholar
  45. Higueras, P., Oyarzun, R., Lillo, J., Oyarzún, J., & Maturana, H. (2005). Atmospheric mercury data for the Coquimbo region, Chile: influence of mineral deposits and metal recovery practices. Atmospheric Environment, 39, 7587–7596.CrossRefGoogle Scholar
  46. Higueras, P., Oyarzun, R., Lillo, J., Sánchez Hernández, J. C., Molina, J. A., Esbrí, J. M., et al. (2006). The Almadén district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Science of the Total Environment, 356, 112–124.CrossRefGoogle Scholar
  47. Higueras, P., Oyarzun, R., Munhá, J., & Morata, D. (2000). Palaeozoic magmatic-related hydrothermal activity in the Almadén syncline (Spain): a long-lasting Silurian to Devonian process? Trans. Instn. Min. Metall. Sect. B: Applied Earth Science, 109, 199–202.Google Scholar
  48. Higueras, P., Oyarzun, R., Oyarzún, J., Maturana, H., Lillo, J., & Morata, D. (2004). Environmental assessment of copper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 19, 1855–1864.CrossRefGoogle Scholar
  49. Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., et al. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10, 12037–12057.CrossRefGoogle Scholar
  50. Kasznia-Kocot, J., Dbkowska, B., Muszyńska-Graca, M., Brewczyński, P. Z., & Złotkowska, R. (2008). Domestic accidental mercury vapor intoxication in families. Journal of Public Health, 30, 113.CrossRefGoogle Scholar
  51. Kim, K.-H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H. H., Steffen, A., et al. (2005). Atmospheric mercury concentrations from several observatory sites in the Northern Hemisphere. Journal of Atmospheric Chemistry, 50, 1–24.CrossRefGoogle Scholar
  52. Kim, K.-H., Mishra, V. K., & Hong, S. (2006). The rapid and continuous monitoring of gaseous elemental mercury (GEM) behavior in ambient air. Atmospheric Environment, 40, 3281–3293.CrossRefGoogle Scholar
  53. Kock, H. H., Bieber, E., Ebinghaus, R., Thees, T. G., & Spain, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39, 7549–7556.CrossRefGoogle Scholar
  54. Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental Research, 111, 1–9.CrossRefGoogle Scholar
  55. Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39, 7570–7579.CrossRefGoogle Scholar
  56. Ladle, R. J., Jepson, P., Araújo, M. B., & Whittaker, R. J. (2004a). Dangers of crying wolf over risk of extinctions. Nature, 428, 799.CrossRefGoogle Scholar
  57. Ladle, R.J., Jepson, P., Araújo, M.B., & Whittaker, R.J. (2004b). Crying wolf on climate change and extinction. School of Geography and the Environment (Oxford University), Selected Publications and Output, Supplemental Publications, http://www.geog.ox.ac.uk/research/biodiversity/output.html#supplements. Accessed 25 Feb 2013.
  58. Lambertsson, L., & Matsnilsson, M. (2006). Organic Material: The primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environmental Science and Technology, 40, 1822–1829.CrossRefGoogle Scholar
  59. Limpert, E., Stahel, W. A., & Abbot, M. (2001). Log-normal distributions across the sciences: keys and clues. BioScience, 51, 341–352.CrossRefGoogle Scholar
  60. Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33, 2067–2079.CrossRefGoogle Scholar
  61. Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32, 49–57.CrossRefGoogle Scholar
  62. Lindqvist, O., & Rodhe, H. (1985). Atmosphere mercury: A review. TELLUS, 37 B, 136–159.Google Scholar
  63. Llanos, W., Higueras, P., Oyarzun, R., Esbrí, J. M., López Berdonces, E. M., García Noguero, A., et al. (2010). The MERSADE (European Union) project: Testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain. Science of the Total Environment, 408, 4901–4905.CrossRefGoogle Scholar
  64. Loppi, S. (2001). Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy). Chemosphere, 45, 991–995.CrossRefGoogle Scholar
  65. Loredo, J., Ordoñez, A., Gallego, J. R., Baldo, C., & García-Iglesias, J. (1999). Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). Journal of Geochemical Exploration, 67, 377–390.CrossRefGoogle Scholar
  66. Martínez-Coronado, A., Oyarzun, R., Esbrí, J. M., Llanos, W., & Higueras, P. (2011). Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. Journal of Geochemical Exploration, 109, 70–77.CrossRefGoogle Scholar
  67. Mashyanov, N. R., & Reshetov, V. V. (1995). Geochemical ecological monitoring using remote sensing technique. Science of the Total Environment, 159, 169–175.CrossRefGoogle Scholar
  68. Mercury Policy Project. (2008). U.S. joins EU in banning mercury exports; environmentalists applaud bi-partisan effort. Published on line: October 15th, 2008, http://mercurypolicy.org/?p=489. Accessed 25 Feb 2013.
  69. Moreno, T., Querol, X., Alastuey, A., García do Santos, S., Fernández Patier, R., Artiñano, B., et al. (2006). PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. Journal of Environmental Monitoring, 8, 1060–1068.CrossRefGoogle Scholar
  70. Morteani, G., Ruggieri, G., Möller, P., & Preinfalk, Ch. (2011). Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Mineralium Deposita, 46, 197–210.CrossRefGoogle Scholar
  71. Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari, E., & Clarkson, T. W. (2000). Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environmental Research, 83, 275–285.CrossRefGoogle Scholar
  72. Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K., & Ekino, S. (1995). Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside of Minamata. Environmental Research, 70, 47–50.CrossRefGoogle Scholar
  73. Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 304, 3–12.CrossRefGoogle Scholar
  74. O’Rourke, D., & Connolly, S. (2003). Just oil? The distribution of environmental and social impacts of oil production and consumption. Annual Review of Environment and Resources, 28, 587–617.CrossRefGoogle Scholar
  75. Oyarzun, R., Higueras, P., Esbrí, J. M., & Pizarro, J. (2007). Mercury in air and plant specimens in herbaria: A pilot study at the MAF Herbarium in Madrid (Spain). Science of the Total Environment, 387, 346–352.CrossRefGoogle Scholar
  76. Oyarzun, R., Lillo, J., Sánchez Hernández, J. C., & Higueras, P. (2005). Pre-industrial metal anomalies in ice cores: A simplified reassessment of windborne soil dust contribution and volcanic activity during the last glaciation. International Geology Review, 47, 1120–1130.CrossRefGoogle Scholar
  77. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40,, 4048–4063.CrossRefGoogle Scholar
  78. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., et al. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499.CrossRefGoogle Scholar
  79. Palinkas, L. A., Mashyanov, N. R., Sholupov, S. E., Durn, G., Miko, S. (1990). Mercury in the atmosphere over rural, urban and industrial parts of Zagreb city. Rudarsko-geolosko-naftni zbornik, 2, 19–27.Google Scholar
  80. Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I. M., Pacyna, J., et al. (2013). Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment, 80, 599–611.CrossRefGoogle Scholar
  81. Pogarev, S. E., Ryzhov, V. V., Mashyanov, N. R., & Sobolev, M. B. (1997). Mercury values in urine from inhabitants of St. Petersburg. Water, Air, and Soil Pollution, 97, 193–198.Google Scholar
  82. Pyle, D. M., & Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37, 5115–5124.CrossRefGoogle Scholar
  83. Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., & Riberio, M. N. G. (1988). Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnology and Oceanography, 33, 551–561.CrossRefGoogle Scholar
  84. Rossini Oliva, S., & Fernández Espinosa, A. J. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86, 131–139.CrossRefGoogle Scholar
  85. Saleem, M., Alfred, S., Bahnisch, R. A., Coates, P., & Kearney, D. J. (2013). Mercury poisoning from home gold amalgam extraction. The Medical Journal of Australia, 199, 125–127.CrossRefGoogle Scholar
  86. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., et al. (2002). Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology, 36, 2303–2310.CrossRefGoogle Scholar
  87. Selin, N. E., et al. (2007). Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysics Research D: Atmospheres, 112. Article no. D02308.Google Scholar
  88. Sholupov, S. E., & Ganeyev, A. A. (1995). Zeeman absorption spectrometry using high frequency modulated light polarization. Spectrochim Acta B, 50, 1227–1238.CrossRefGoogle Scholar
  89. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, A. (2004). Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology, 85, 473–485.CrossRefGoogle Scholar
  90. Sigler, J. M., Mao, H., & Talbot, R. (2009). Gaseous elemental and reactive mercury in Southern New Hampshire. Atmospheric Chemistry and Physics, 9, 1929–1942.CrossRefGoogle Scholar
  91. Sillman, S., Marsik, F., Al-Wali, K.I., Keeler, G.J., & Landis, M.S., (2005). Models for the formation and transport of reactive mercury: results for Florida, the Northeastern U.S. and the Atlantic Ocean. Fifth Air Quality Conference: Mercury, Trace Elements, SO3 and Particulate Matter, Arlington, VA., September 19–21, 2005, http://www-personal.umich.edu/~sillman/web-publications/SillmanHg-AQV05.pdf.
  92. Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11, 4779–4787.CrossRefGoogle Scholar
  93. Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J., Wangberg, I., et al. (2003). Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters, 30, 23–31.CrossRefGoogle Scholar
  94. Smith, W. R., Montopoli, G., Byerly, A., Montopoli, M., Harlow, H., & Wheeler, A. R., I. I. I. (2013). Mercury toxicity in wildland firefighters. Wilderness & Environmental Medicine, 24, 141–145.CrossRefGoogle Scholar
  95. Smith, R. G., Vorwald, A. J., Patil, L. S., & Mooney, T. F., Jr. (1970). Effects of exposure to mercury in the manufacture of chlorine. The American Industrial Hygiene Association Journal, 31, 687–700.CrossRefGoogle Scholar
  96. Spiegel, S. J., & Veiga, M. M. (2005). Building capacity in small-scale mining communities: Health, ecosystem sustainability, and the Global Mercury Project. EcoHealth, 2, 361–369.CrossRefGoogle Scholar
  97. Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., & Dommergue, A. (2010). A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 10, 8245–8265.CrossRefGoogle Scholar
  98. Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., & Landing, W. M. (2009). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cy. 23. Article no. GB2010.Google Scholar
  99. US EPA. (2001). Environmental technology verification report: LUMEX Ltd. mercury continuous emission monitor. U.S. Environmental Protection Agency, http://www.epa.gov/etv/pubs/01_vr_lumex_cem.pdf.
  100. US EPA. (2007). Mercury Response Guidebook—Section 3. http://www.epa.gov/epaoswer/hazwaste/mercury/pdf/chapter3.pdf, May 2007.
  101. US OSHA (2007). Health and safety (Hg). Occupational Hazards, http://www.hgtech.com/HSE/HSE.htm. Acceded 25 Feb 2013.
  102. US EPA. (2012). What is a toxic substance? Learn About Chemicals Around Your House, US Environmental Protection Agency, http://www.epa.gov/kidshometour/toxic.htm. Acceded 25 Feb 2013.
  103. Varekamp, J. C., & Buseck, P. R. (1981). Mercury emissions from Mount St Helens during September 1980. Nature, 293, 555–556.CrossRefGoogle Scholar
  104. Vaselli, O., Higueras, P., Nisi, B., Esbrí, J. M., Cabassi, J., Martínez-Coronado, A., et al. (2013). Distribution of Gaseous Hg in the Mercury Mining District of Mt. Amiata (Central Italy): a Geochemical Survey Prior the Reclamation Project. Environmental Research, 125, 179–187.CrossRefGoogle Scholar
  105. Veiga, M. M., Bermudez, D., Pacheco-Ferreira, H., Martins Pedroso, L. R., Gunson, A. J., Berrios, G., et al. (2005). Mercury pollution from artisanal gold mining in Block B, El Callao, Bolívar State, Venezuela. In N. Pirrone & K. Mahaffey (Eds.), Dynamics of mercury pollution on regional and global scales: atmospheric processes. Human exposure around the world (pp. 421–450). Norwell, Massachusetts: Springer.CrossRefGoogle Scholar
  106. WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications European Series 91, World Health Organization Regional Office for Europe, Copenhagen, 288 pp.Google Scholar
  107. WHO (2005). Mercury in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, http://www.who.int/water_sanitation_health/dwq/chemicals/mercury/en/. Acceded 25 Feb 2013.
  108. Yasutake, A., Cheng, J. P., Kiyono, M., Uraguchi, S., Liu, X., Miura, K., et al. (2011). Rapid monitoring of mercury in air from an organic chemical factory in China using a portable mercury analyzer. The Scientific World Journal, 11, 1630–1640.CrossRefGoogle Scholar
  109. Yuen, E., Cortez, P. S., & Goebel, P. J. (2000). Family poisoned by mercury vapor inhalation. The American Journal of Emergency Medicine, 18, 599–602.CrossRefGoogle Scholar
  110. Žagar, D., Knap, A., Warwick, J. J., Rajar, R., Horvat, M., & Četina, M. (2006). Modelling of mercury transport and transformation processes in the Idrijca and Soča river system. Science of the Total Environment, 368, 143–163.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pablo Higueras
    • 1
    • 2
  • Roberto Oyarzun
    • 2
    • 3
  • Joze Kotnik
    • 4
  • José María Esbrí
    • 2
  • Alba Martínez-Coronado
    • 2
  • Milena Horvat
    • 4
  • Miguel Angel López-Berdonces
    • 2
  • Willians Llanos
    • 5
  • Orlando Vaselli
    • 6
  • Barbara Nisi
    • 7
  • Nikolay Mashyanov
    • 8
  • Vladimir Ryzov
    • 8
  • Zdravko Spiric
    • 9
  • Nikolay Panichev
    • 10
  • Rob McCrindle
    • 10
  • Xinbin Feng
    • 11
  • Xuewu Fu
    • 11
  • Javier Lillo
    • 12
  • Jorge Loredo
    • 13
  • María Eugenia García
    • 14
  • Pura Alfonso
    • 15
  • Karla Villegas
    • 15
    • 16
  • Silvia Palacios
    • 2
    • 15
  • Jorge Oyarzún
    • 2
    • 17
  • Hugo Maturana
    • 2
    • 17
  • Felicia Contreras
    • 18
  • Melitón Adams
    • 18
  • Sergio Ribeiro-Guevara
    • 19
  • Luise Felipe Niecenski
    • 20
  • Salvatore Giammanco
    • 21
  • Jasna Huremović
    • 22
  1. 1.Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de AlmadénUniversidad de Castilla-La ManchaAlmadénSpain
  2. 2.Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La ManchaAlmadénSpain
  3. 3.Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain
  4. 4.Department of Environmental SciencesJozef Stefan InstituteLjubljanaSlovenia
  5. 5.Exploraciones Mineras S.A. (EM)ProvidenciaChile
  6. 6.Dipartimento di Scienze della TerraUnversitá di FlorenceFlorenceItaly
  7. 7.CNR-IGG Istituto di Geoscienze e GeorisorsePisaItaly
  8. 8.Department of GeologySt. Petersburg State UniversityPetersburgRussian Federation
  9. 9.OIKON, Institute for Applied EcologyZagrebCroatia
  10. 10.Department of ChemistryTshwane University of TechnologyArcadia, PretoriaSouth Africa
  11. 11.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  12. 12.Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstoles, MadridSpain
  13. 13.Departamento de Explotación y Prospección de Minas, E.T.S. Ingenieros de MinasUniversidad de OviedoOviedoSpain
  14. 14.Facultad de Ciencias QuímicasUniversidad Mayor de San AndrésLa PazBolivia
  15. 15.Departament d’Enginyeria Minera i Recursos MineralsUniversitat Politècnica de CatalunyaCatalunyaSpain
  16. 16.Escuela de PostgradoUniversidad Técnica de OruroOruroBolivia
  17. 17.Departamento de Ingeniería de MinasUniversidad de la SerenaLa SerenaChile
  18. 18.Facultad de Agronomía (Maracay)Universidad Central de VenezuelaMaracayVenezuela
  19. 19.Centro AtomicoBarilocheArgentina
  20. 20.Universidade Federal do Rio GrandePorto AlegreBrazil
  21. 21.Instituto Nazionale di Geofisica e VolcanologiaCataniaItaly
  22. 22.Prirodno matematicki fakultetSarajevoBosna and Herzegovina

Personalised recommendations