Environmental Geochemistry and Health

, Volume 36, Issue 4, pp 613–631 | Cite as

Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit

  • Keith D. Morrison
  • Jennifer C. Underwood
  • David W. Metge
  • Dennis D. Eberl
  • Lynda B. Williams
Original Paper


As antibiotic-resistant bacterial strains emerge and pose increased global health risks, new antibacterial agents are needed as alternatives to conventional antimicrobials. Naturally occurring antibacterial clays have been identified which are effective in killing antibiotic-resistant bacteria. This study examines a hydrothermally formed antibacterial clay deposit near Crater Lake, OR (USA). Our hypothesis is that antibacterial clays buffer pH and Eh conditions to dissolve unstable mineral phases containing transition metals (primarily Fe2+), while smectite interlayers serve as reservoirs for time release of bactericidal components. Model pathogens (Escherichia coli ATCC 25922 and Staphylococcus epidermidis ATCC 14990) were incubated with clays from different alteration zones of the hydrothermal deposit. In vitro antibacterial susceptibility testing showed that reduced mineral zones were bactericidal, while more oxidized zones had variable antibacterial effect. TEM images showed no indication of cell lysis. Cytoplasmic condensation and cell wall accumulations of <100 nm particles were seen within both bacterial populations. Electron energy loss analysis indicates precipitation of intracellular Fe3+-oxide nanoparticles (<10 nm) in E. coli after 24 h. Clay minerals and pyrite buffer aqueous solutions to pH 2.5–3.1, Eh > 630 mV and contain elevated level (mM) of soluble Fe (Fe2+ and Fe3+) and Al3+. Our interpretation is that rapid uptake of Fe2+ impairs bacterial metabolism by flooding the cell with excess Fe2+ and overwhelming iron storage proteins. As the intracellular Fe2+ oxidizes, it produces reactive oxygen species that damage biomolecules and precipitates Fe-oxides. The ability of antibacterial clays to buffer pH and Eh in chronic non-healing wounds to conditions of healthy skin appears key to their healing potential and viability as an alternative to conventional antibiotics.


Antibacterial Clays Iron redox Pyrite Pathogens Bacteria 



The authors are grateful for the use of the United States Geological Survey (Boulder CO), X-ray Diffraction Lab. Various laboratories at Arizona State University supported this work, and we thank David Lowry and Robert Roberson in the School of Life Sciences (SOLS) Bioimaging Facility—Electron microscopy division; Stanley Williams for observations in the field; Sandra Londoño Arias for assistance with the TEM; Thomas Groy for XRD facilities at ASU; Everett Shock for use of his biogeochemistry lab; Steve Romaneillo for ICP-MS analyses in the W.M. Keck Foundation Laboratory for Environmental Biogeochemistry; Rajeev Misra (SOLS) and Amisha Poret-Peterson in the Astrobiology Inst. for help with microbiology techniques; Karl Weiss and Jiangtao Zhu in the LeRoy Eyring Center for Solid State Science for help with the STEM–EELS imaging. This research was funded by Grant (EAR-1123931) from the National Science foundation, the Clay Minerals Society, and the Geological Society of America.

Supplementary material

10653_2013_9585_MOESM1_ESM.doc (304 kb)
Supplementary material 1 (DOC 303 kb)


  1. Alleva, R., Nasole, E., Di Donato, F., Borghi, B., Neuzil, J., & Tomasetti, M. (2005). α-Lipoic acid supplementation inhibits oxidative damage accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy. Biochemical and Biophysical Research Communications, 300, 404–410.CrossRefGoogle Scholar
  2. Anastácio, A. S., Harris, B., Yoo, H., Fabris, J. D., & Stucki, J. W. (2008). Limitations of the ferrozine method for quantitative assay of mineral systems for ferrous and total iron. Geochimica et Cosmochimica Acta, 72, 5001–5008.CrossRefGoogle Scholar
  3. Aran, D., Maul, A., & Masfaraud, J. (2008). A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance. C.R. Geoscience, 340, 865–871.CrossRefGoogle Scholar
  4. Aruoma, O. I., Halliwell, B., Laughton, M. J., Quinlan, G. J., & Gutteridge, J. M. C. (1989). The mechanism of interaction of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochemisrty Journal, 258, 617–620.Google Scholar
  5. Bacon, C. R. (2008). Geologic map of Mount Mazama and Crater Lake caldera, Oregon. U.S Geological Survey Scientific Investigations Map, 2832, 1–47.Google Scholar
  6. Bhowal, S., & Chakraborty, R. (2011). Five novel acid-tolerant oligotrophic thiosulfate-metabolizing chemolithotrophic acid mine drainage strains affiliated with the genus Burkholderia of Betaproteobacteria and identification of two novel soxB gene homologues. Research in Microbiology, 162, 436–445.CrossRefGoogle Scholar
  7. Borrok, D., Fein, J. B., Tischler, M., O’Loughlin, E., Meyer, H., Liss, M., et al. (2004). The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chemical Geology, 209, 107–119.CrossRefGoogle Scholar
  8. Brunet de Courrsou L. (2002). Study Group Report on Buruli ulcer treatment with clay, 5th WHO Advisory Group Meeting on Buruli Ulcer, Geneva, Switzerland.Google Scholar
  9. Bullen, J. J., Rogers, H. J., Spalding, P. B., & Ward, C. G. (2006). Natural resistance, iron and infection: A challenge for clinical medicine. Journal of Medical Microbiology, 55, 251–258.CrossRefGoogle Scholar
  10. Cabiscol, E., Tamarit, J., & Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3, 3–8.Google Scholar
  11. Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J. P., Ravanat, J. L., et al. (1999). Hydroxyl radicals and DNA base damage. Mutation Research, 424, 9–21.CrossRefGoogle Scholar
  12. Carretaro, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155–163.CrossRefGoogle Scholar
  13. Church, C. D., Wilkin, R. T., Alpers, C. N., Rye, R. O., & McCleskey, R. B. (2007). Microbial sulfate reduction and metal attenuation in pH 4 acidic mine water. Geochemical Transictions, 8, 1–14.CrossRefGoogle Scholar
  14. Cohn, C. A., Laffers, R., Simon, S. R., O’Riordan, T., Schoonen, & M. A. A. (2006). Role of pyrite in formation of hydroxyl radicals in coal: Possible implications for human health. Particle and Fibre Toxic, 3(article 16), 1–10.Google Scholar
  15. Cunningham, T. B., Koehl, J. L., Summers, J. S., & Haydel, S. E. (2010). pH-dependent metal ion toxicity influences of the antibacterial activity of two natural mineral mixtures. PLoS-ONE, 5, e9456.CrossRefGoogle Scholar
  16. Derkowski, A., & Bristow, T. F. (2012). On the problems of total specific surface area and cation exchange capacity measurements in organic-rich sedimentary rocks. Clays and Clay Minerals, 60, 348–362.CrossRefGoogle Scholar
  17. Dick, J. M. (2008). Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochemical Transactions, 9(10), 1–17.Google Scholar
  18. Dold, B. (2005). Basic concepts in environmental geochemistry of sulfide mine-waste, Del 22 de Agosto al 2 de Sept. XXIV Curso Latinoamericano de Metalogenia UNESCO-SEG.Google Scholar
  19. Eberl, D. D. (2007). User’s guide to rockjock: A program for determining quantitative mineralogy from powder X-ray diffraction data. U.S. Geological Survey, Open-file report 03–78.Google Scholar
  20. Evangelou, V. P. (1995). Pyrite oxidation and its control. New York: CRC Press.Google Scholar
  21. Fang, F. C. (2004). Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nature Reviews Microbiology, 2, 820–832.CrossRefGoogle Scholar
  22. Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.CrossRefGoogle Scholar
  23. Ferrero, T. (1992). Geologic mapping and sampling project, Foster Creek sulfur deposit. Company Report, Ferrero Geologic, 340 Avery St. Ashland Oregon, 97520.Google Scholar
  24. Galan, E., Carretero, M. I., & Fernandez-Caliani, J. C. (1999). Effects of acid mine drainage on clay minerals suspended in the Tinto River (Río Tinto, Spain). An experimental approach. Clay Minerals, 34, 99–108.CrossRefGoogle Scholar
  25. Garrels, R. M., & Thompson, M. E. (1960). Oxidation of pyrite by iron sulfate solutions. American Journal of Science, 258-A, 57–67.Google Scholar
  26. Gethin, G. T. (2007). The significance of surface pH in chronic wounds. Wounds UK, 3, 52–56.Google Scholar
  27. Gethin, G. T., Cowman, S., & Conroy, R. M. (2008). The impact of Manuka honey dressings on the surface pH of chronic wounds. International Wound Journal, 5, 185–194.CrossRefGoogle Scholar
  28. Götz, F. (2002). Staphylococcus and biofilms. Molecular Microbiology, 43, 1367–1378.CrossRefGoogle Scholar
  29. Gutteridge, J. M. C. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828.Google Scholar
  30. Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: Its mechanism, measurement, and significance. American Journal of Clinical Nutrition, 57, 715s–725s.Google Scholar
  31. Hanaichi, T., Sato, T., Iwamoto, T., Malavasi-Yamashiro, J., Hoshing, M., & Mizuno, N. (1986). A stable lead by modification of Sato’s method. Journal of Electron Microscopy, 35, 304–306.Google Scholar
  32. Harrison, J. J., Turner, R. J., & Ceri, H. (2005). High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiology, 5, 1–11.CrossRefGoogle Scholar
  33. Hutchinson, I. P. G., & Ellison, R. D. (1992). Mine waste management. Lewis publishers, INC. 121 S. Main St. Chelsea, Michigan.Google Scholar
  34. Isakow, W., & Micek, S. T. (2006). Methicillin-resistant staphylococcus aureus pneumonia-current and furute therapeutic options. US Respiratory Disease 62–64.Google Scholar
  35. Kaufman, T., Eichenlaub, E. H., Angel, M. F., Levin, M., & Futrell, J. W. (1985). Topical acidification promotes healing of experimental deep partial thickness skin burns: A randomized double-blind preliminary study. Burns, 12, 84–90.CrossRefGoogle Scholar
  36. Komadel, P., & Stucki, J. W. (1988). Quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: III. A rapid photochemical method. Clays and Clay Minerals, 36, 379–381.CrossRefGoogle Scholar
  37. Lambers, H., Piessens, S., Bloem, A., Pronk, H., & Finkel, P. (2006). Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science, 28, 359–370.CrossRefGoogle Scholar
  38. Lawrence, J. R., Swerhone, G. D. W., Leppard, G. G., Araki, T., Zhang, X., West, M. M., et al. (2003). Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environment Microbiology, 69, 5543–5554.CrossRefGoogle Scholar
  39. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews, 11, 371–384.Google Scholar
  40. Leveen, H. H., Falk, G., Borek, B., Diaz, C., Lynfield, Y., Wynkoop, B. J., et al. (1973). Chemical acidification of wounds: An adjuvant to healing and the unfavorable action of alkalinity and ammonia. Annals of Surgery, 178, 745–753.CrossRefGoogle Scholar
  41. Liss, S. N., Droppo, I. G., Flannigan, D. T., & Leppard, G. G. (1996). Floc architecture in wastewater and natural riverine systems. Environmental Science and Technology, 30, 680–686.CrossRefGoogle Scholar
  42. Liu, Y., Kalen, A., Risto, O., & Whalstrom, O. (2002). Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair and Regeneration, 10, 336–340.CrossRefGoogle Scholar
  43. Meunier, A. (2005). Clays. Berlin, Heidelberg, New York: Springer.Google Scholar
  44. Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.Google Scholar
  45. Morgan, B., & Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere, 68, 2080–2084.CrossRefGoogle Scholar
  46. Moses, C. O., & Herman, J. S. (1991). Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta, 55, 471–482.CrossRefGoogle Scholar
  47. Mullen, M. D., Wolf, D. C., Ferris, F., Beveridge, T. J., Flemming, C. A., & Bailey, G. W. (1989). Bacterial sorption of heavy metals. Applied Environmental Microbiology, 55, 3143–3149.Google Scholar
  48. Murad, E., & Rojik, P. (2004). Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: The legacy of coal and sulfide ore mining. Super Soil 2004: 3rd Australian New Zealand Soils Conference, Dec 2004, University of Sydney, Australia.Google Scholar
  49. Murad, E., & Rojik, P. (2005). Iron mineralogy of mine drainage precipitates as environmental indicators: Review of the current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Minerals, 40, 427–440.CrossRefGoogle Scholar
  50. Musk, D. J., Banko, D. A., & Hergenrother, P. J. (2005). Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chemistry and Biology, 12, 789–796.CrossRefGoogle Scholar
  51. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.CrossRefGoogle Scholar
  52. Nies, D. H. (2000). Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles, 4, 77–82.CrossRefGoogle Scholar
  53. Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27, 313–339.CrossRefGoogle Scholar
  54. Ratledge, C., & Dover, L. G. (2000). Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 54, 881–941.CrossRefGoogle Scholar
  55. Reynolds, R. C. (1985). NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed layered clay minerals. In R. C. Reynolds, 8 Brook Rd, Hanover, New Hampshire, 03755, USA.Google Scholar
  56. Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state of the art assessment of the reaction mechanism. Geochimica et cosmochimica act, 67, 873–880.CrossRefGoogle Scholar
  57. Roth, R. N., & Weiss, L. D. (1994). Hyperbaric oxygen and wound healing. Clinics in Dermatology, 12, 141–156.CrossRefGoogle Scholar
  58. Roy, S., Khanna, S., Nallu, K., Hunt, T. K., & Sen, C. K. (2006). Dermal wound healing is subject to redox control. Molecular Therapy, 1, 211–220.CrossRefGoogle Scholar
  59. Schneider, L. A., Korber, A., Grabbe, S., & Dissemond, J. (2007). Influence of pH on wound-healing: A new perspective for wound therapy? Archives of Dermatological Research, 298, 413–420.CrossRefGoogle Scholar
  60. Schoonen, M. A. A., Harrington, A. D., Laffers, R., & Strongin, D. R. (2010). Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochimica et Cosmochimica Acta, 74, 4971–4987.CrossRefGoogle Scholar
  61. Shaw, S. A., & Hendry, M. J. (2009). Geochemical and mineralogical impacts of H2SO4 on clays between pH 5.0 and 3.0. Applied Geochemistry, 24, 333–345.CrossRefGoogle Scholar
  62. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.CrossRefGoogle Scholar
  63. Sillitoe, R. H., Hedenquist, J. W. (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, Society of Economic Geologists, Special Publication, 10.Google Scholar
  64. Singer, P. C., & Stumm, W. (1970). Acid mine drainage the rate determining step. University of Toronto Study, Geological Survey, 44, 83–93.Google Scholar
  65. Smith, J. L. (2004). The physiological role of ferritin like compounds in bacteria. Clinical Reviews in Microbiology, 30, 173–185.Google Scholar
  66. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ulrastructural Research, 26, 31–43.CrossRefGoogle Scholar
  67. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rate constants in natural waters (3rd ed.). New York: Wiley.Google Scholar
  68. Tang, L., Zhang, Y., Qian, Z., & Shen, X. (2000). The mechanism of Fe2+-initiated lipid peroxidation in liposomes: The dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Biochemical Society Journal, 352, 27–36.CrossRefGoogle Scholar
  69. Taylor, J. E., Laity, P. R., Hicks, J., Wong, S. S., Norris, K., Khunkamchoo, P., et al. (2005). Extent of iron pick-up in deforoxamine-coupled polyurethane materials for therapy of chronic wounds. Biomaterials, 26, 6024–6033.CrossRefGoogle Scholar
  70. Totsche, O., Fyson, A., Kalin, M., & Steinberg, C. E. W. (2006). Titration curves-A useful instrument for assessing the buffer systems of acidic mining waters. Environmental Science and Pollution Research, 13, 215–224.CrossRefGoogle Scholar
  71. Urrutia, M. M., & Beveridge, T. J. (1995). Formation of short-range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands. Geoderma, 65, 149–165.CrossRefGoogle Scholar
  72. Valverde, A., Delvasto, P., Peix, A., Velazquez, E., Santa-Regina, I., Ballester, A., et al. (2006). Burkholderia ferrariae sp. Nov., isolated from an iron ore in Brazil. International Journal of Systematic and Evolutionary Microbiology, 56, 2421–2425.CrossRefGoogle Scholar
  73. Weller, R., & Finnen, M. J. (2006). The effects of topical treatment with acidified nitrite on wound healing in normal and diabetic mice. Nitric Oxide, 15, 395–399.CrossRefGoogle Scholar
  74. Weller, R., Price, R. J., Ormerod, A. D., Benjamin, N., & Leifert, C. (2001). Antimicrobial effect of acidified nitrite on dermatophyte fungi. Candida and bacterial skin pathogens. Journal of Applied Microbiology, 90, 648–652.CrossRefGoogle Scholar
  75. Williams, R. J. P. (1999). What is wrong with aluminium? The J.D. Birchall memorial lecture. Journal of Inorganic Biochemistry, 76, 81–88.CrossRefGoogle Scholar
  76. Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52(7–8), 745–770.CrossRefGoogle Scholar
  77. Williams, L. B., Haydel, S. E., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.CrossRefGoogle Scholar
  78. Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courrsou, L. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.Google Scholar
  79. Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., et al. (2011). What makes a natural clay antibacterial? Environmental Science and Technology, 45, 3768–3773.CrossRefGoogle Scholar
  80. Wilson, E., Henry, D. A., & Smith, J. A. (1990). Disk elution method for MICs and MBCs. Antimicrobial Agents and Chemotherapy, 34, 2128–2132.CrossRefGoogle Scholar
  81. Yariv, S. (1992). The effect of tetrahedral substitution of Si by Al on the surface acidity of the oxygen plane of clay minerals. International Reviews in Physical Chemistry, 11, 345–375.CrossRefGoogle Scholar
  82. Yariv, S., & Cross, H. (2002). Organo-clay complexes and interactions (pp. 1–38). New York: Marcel Dekker, Inc.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Keith D. Morrison
    • 1
  • Jennifer C. Underwood
    • 2
  • David W. Metge
    • 2
  • Dennis D. Eberl
    • 2
  • Lynda B. Williams
    • 1
  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.U.S. Geological SurveyBoulderUSA

Personalised recommendations