Environmental Geochemistry and Health

, Volume 36, Issue 2, pp 209–223 | Cite as

Integrated environmental assessment of freshwater sediments: a chemical and ecotoxicological approach at the Alqueva reservoir

  • P. PalmaEmail author
  • L. Ledo
  • S. Soares
  • I. R. Barbosa
  • P. Alvarenga
Original Paper


In order to study the pollution of an aquatic ecosystem, it is necessary to analyze not only the levels of chemical pollutants in water, but also those accumulated in the sediment matrix, as well as to assess its ecotoxicological status. The Alqueva reservoir, the largest artificial lake in Europe, was chosen as case study as it constitutes the most important water supply source in southern Portugal. It is located in the Guadiana River Basin, in a semi-arid region with high levels of water scarcity and where agriculture is one of the main activities. The evaluation of sediments comprised: (1) physical and chemical analysis (grain size, pH, organic matter, nitrogen, phosphorus); (2) potentially toxic trace elements (Cu, As, Pb, Cr, Cd, Zn and Ni); and (3) ecotoxicological evaluation with Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Heterocypris incongruens. Total trace element concentrations indicated that As, Cd, and Pb surpassed the Canadian levels for the protection of aquatic life, in most of Alqueva’s sites. The results of the toxicity assessment showed that some locations induced acute and chronic toxicity in the species used. Further, the H. incongruens was the most sensitive species as far as the contamination found in the sediment is concerned, followed by the bacteria V. fischeri. This integrative approach, together with the water column quality assessment, allowed a comprehensive evaluation of the environmental quality of this strongly modified water body and will allow the implementation of remediation strategies to obtain a good ecological potential as proposed in the Water Framework Directive.


Sediment toxicity Alqueva reservoir Toxic trace elements Water quality Risk assessment 



The present research was supported by the project PTDC/AAC-AMB/103547/2008, from FCT (Fundação para a Ciência e Tecnologia), co-financed by FEDER, through POFC (Eixo I-Programa Operacional Fatores de Competitividade) from QREN (COMPETE Refª: FCOMP-01-0124-FEDER-008582).


  1. Aelion, C. M., & Davis, H. T. (2007). Use of a general toxicity test to predict heavy metal concentrations in residential soils. Chemosphere, 67(5), 1043–1049.CrossRefGoogle Scholar
  2. Alvarez-Valero, A. M., Pérez-Lopez, R., Matos, J., Capitán, M. A., Nieto, J. M., Sáez, R., et al. (2008). Potential impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environmental Geology, 55, 1797–1809.CrossRefGoogle Scholar
  3. APHA. (1998). Standard methods for the examination of water and wastewater. New York: America Public Health Association.Google Scholar
  4. ARHAlentejo (Administração da Região Hidrográfica do Alentejo I.P.). (2011). Plano de gestão das bacias hidrográficas integradas nas regiões hidrográficas 6 e 7: Região Hidrográfica 7. Portugal, DC: Ministério do Ambiente e do Ordenamento do Território (in Portuguese).Google Scholar
  5. ASTM. (1998). Standard practice for conducting toxicity tests with fishes, microinvertebrates and amphibians. In American Society for Testing, Material (Ed.), Annual Book of ASTM Standards, E729-90 (pp. 271–296). Philadelphia: ASTM.Google Scholar
  6. Baird, D. J., Barber, I., Bradley, M., Calow, P., & Soares, A. M. V. M. (1989). The Daphnia bioassay: A critique. Hydrobiologia, 188–189, 403–406.CrossRefGoogle Scholar
  7. Batista, M. J., Abreu, M. M., Locutura, J., De Oliveira, D., Matos, J. X., Silva, C., et al. (2012). Evaluation of trace elements mobility from soils to sediments between the Iberian Pyrite Belt and the Atlantic Ocean. Journal of Geochemical Exploration,. doi: 10.1016/j.gexplo.2012.06.011.Google Scholar
  8. CCME. (2002). Canadian sediment quality guidelines for the protection of aquatic life. Canada: Canadian Council of Ministers of the Environment.Google Scholar
  9. Chapman, P. M., Ho, K. T., Munns, W. R., Jr, Solomon, K., & Weinstein, M. P. (2002). Issues in sediment toxicity and ecological risk assessment. Marine Pollution Bulletin, 44, 271–278.CrossRefGoogle Scholar
  10. Chial, B., & Persoone, G. (2002). Cyst-based toxicity tests XIV- application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium). Environmental Toxicology, 17, 533–537.CrossRefGoogle Scholar
  11. Corredeira, C., Araújo, M. F., & Jouanneau, J. M. (2008). Copper, zinc and lead impact in SW Iberian shelf sediments: An assessment of recent historical changes in Guadiana river basin. Geochemical Journal, 42, 319–329.CrossRefGoogle Scholar
  12. Creasel (2001). Ostracodtoxkit F™. Chronic “direct contact” toxicity test for freshwater sediments. Standard operational procedure. Deinze, Belgium.Google Scholar
  13. Davoren, M., Ní Shúilleabháin, S., O′Halloran, J., Hartl, M. G. J., Sheehan, D., O′Brien, N. M., et al. (2005). A test battery approach for the ecotoxicological evaluation of estuarine sediments. Ecotoxicology, 14, 741–755.CrossRefGoogle Scholar
  14. Delgado, J., Nieto, J. M., & Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana estuary sediments (SW Iberian Peninsula). Based on GIS-mapping techniques. Estuarine, Coastal and Shelf Science, 88, 71–83.CrossRefGoogle Scholar
  15. Delgado, J., Sarmiento, A. M., de Condesso Melo, M. T., & Nieto, J. M. (2009). Environmental impact of mining activities in the southern sector of the Guadiana basin (SW of the Iberian Peninsula). Water, Air, and Soil pollution, 199(1–4), 323–341.CrossRefGoogle Scholar
  16. Delistraty, D., & Yokel, J. (2007). Chemical and ecotoxicological characterization of Columbia River sediments below the Hanford site (USA). Ecotoxicology and Environmental Safety, 66, 16–28.CrossRefGoogle Scholar
  17. Dettmers, J. M., & Stein, R. A. (1992). Food consumption by larval gizzard shad: Zooplankton effects and implications for reservoir communities. Transactions of the American Fisheries Society, 121, 494–507.CrossRefGoogle Scholar
  18. Faria, M. S., Lopes, R. J., Nogueira, A. J. A., & Soares, A. M. V. M. (2007). In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: The relative toxic effect of sediment versus water contamination. Environmental Toxicology and Chemistry, 26(9), 1968–1977.CrossRefGoogle Scholar
  19. Feiler, U., Ahlf, W., Hoess, S., Hollert, H., Neumann-Hensel, K., Mellery, M., et al. (2005). The SEKT joint research project: definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environmental Science and Pollution Research, 12, 257–258.CrossRefGoogle Scholar
  20. Finney, D. J. (1971). Probit analysis. Cambridge: Cambridge University Press.Google Scholar
  21. Fonseca, R., Barriga, F. J. A. S., & Fyfe, W. S. (1998). Reversing desertification by using dam reservoir sediments as agriculture soils. Episodes, 21(4), 218–224.Google Scholar
  22. Höss, S., Ahlf, W., Fahnenstich, C., Gilberg, D., Hollert, H., Melbye, K., et al. (2010). Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—Determination of toxicity thresholds. Environmental Pollution, 158, 2999–3010.CrossRefGoogle Scholar
  23. IA (Instituto do Ambiente). (2005). Relatório síntese sobre a caracterização das regiões hidrográficas previstas na Directiva Quadro da Água. Lisboa: Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. (in Portuguese).Google Scholar
  24. ISO 11348–2. (1998). Determination of inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test). Part 2: method using liquid-dried bacteria. Geneva: International Organization for Standardisation.Google Scholar
  25. ISO 11466. (1995). Soil Quality—Extraction of trace elements soluble in aqua regia. Geneva: International Organization for Standardization.Google Scholar
  26. ISO 6341. (1996). Water quality—Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute toxicity test. Geneve: International Organization for Standardisation.Google Scholar
  27. Kwok, C. K., Yang, S. M., Mak, N. K., Wong, C. K. C., Liang, Y., Leung, S. Y., et al. (2010). Ecotoxicological study on sediments of Mai Po marshes, Hong Kong using organisms and biomarkers. Ecotoxicology and Environmental Safety, 73, 541–549.CrossRefGoogle Scholar
  28. Landis, Wayne. G., & Ming-Ho, Yu. (2003). Introduction to Environmental Toxicology: Impacts of Chemicals Upon Ecological Systems. Florida: Lewis Publishers.Google Scholar
  29. LNEC (Laboratório Nacional de Engenharia Civil). (1966). E 196—Solos Análise granulométrica. Lisboa: LNEC.Google Scholar
  30. Manzo, S., De Nicola, F., De Luca Picione, F., Maisto, G., & Alfani, A. (2008). Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests. Chemosphere, 71, 1937–1944.CrossRefGoogle Scholar
  31. Mezquita, F., Hernández, F., & Rueda, J. (1999). Ecology and distribution of ostracods in a polluted Mediterranean river. Palaeogeography, Palaeoclimatology, Palaeoecology, 148(1–3), 87–103.CrossRefGoogle Scholar
  32. Morais, M., Serafim, A., Pinto, P., Ilheu, A., M. Ruivo. (2007). Monitoring the water quality in Alqueva reservoir, Guadiana River, southern Portugal. In Gunter Gunkel & Maria do Carmo (Eds.), Reservoir and River Basin Management: Exchange of Experiences from Brazil Portugal and Germany (pp. 96-112). Berlim.Google Scholar
  33. Oliveira, A., Palma, C., & Valença, M. (2011). Heavy metal distribution in surface sediments from the continental shelf adjacent to Nazaré canyon. Deep sea research Part II: Topical studies in oceanography, 58(23–24), 2420–2432.CrossRefGoogle Scholar
  34. Palma, P., Alvarenga, P., Palma, V., Fernandes, R. M., Soares, A. M. V. M., & Barbosa, I. R. (2010a). Assessment of anthropogenic sources of water pollution using multivariate statistical techniques: A case study of the Alqueva’s reservoir, Portugal. Environmental Monitoring and Assessment, 165, 539–552.CrossRefGoogle Scholar
  35. Palma, P., Alvarenga, P., Palma, V., Matos, C., Fernandes, R. M., Soares, A. M. V. M., et al. (2010b). Evaluation of surface water quality using an ecotoxicological approach: A case study of the Alqueva Reservoir (Portugal). Environmental Science and Pollution Research, 17, 703–771.CrossRefGoogle Scholar
  36. Palma, P., Kuster, M., Alvarenga, P., Palma, V. L., Fernandes, R. M., Soares, A. M. V. M., et al. (2009). Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (South of Portugal) using on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Environment International, 35, 545–551.CrossRefGoogle Scholar
  37. Pérez-López, R., Álvarez-Valero, A. M., Nieto, J. M., Sáez, R., & Matos, J. X. (2008). Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Applied Geochemistry, 23, 3452–3463.CrossRefGoogle Scholar
  38. Persoone, G. (1999). THAMNOTOXKIT FTM—Crustacean toxicity screening test for freshwater. Standard Operational Procedure. Belgium.Google Scholar
  39. Piva, F., Ciaprini, F., Onorati, F., Benedetti, M., Fattorini, D., Ausili, A., et al. (2011). Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: A practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere, 83, 475–485.CrossRefGoogle Scholar
  40. Reis, A., Parker, A., & Alencão, A. (2010). Avaliação da qualidade de sedimentos em rios de montanha: Um caso de estudo no norte de Portugal. Revista Recursos Hídricos, 31(1), 87–97.Google Scholar
  41. Roig, N., Nadal, M., Sierra, J., Ginebreda, A., Schuhmacher, M., & Domingo, J. L. (2011). Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environmental International, 37, 671–677.CrossRefGoogle Scholar
  42. Roman, Y. A., De Schamphelaere, K. A. C., Nguyen, L. T. H., & Janssen, C. R. (2007). Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment. Science of the Total Environment, 387, 128–140.CrossRefGoogle Scholar
  43. Sarmiento, A. M., DelValls, A., Nieto, J. M., Salamanca, M. J., & Caraballo, M. A. (2011). Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Science of the Total Environment, 409(22), 4763–4771.CrossRefGoogle Scholar
  44. Serafim, A., Morais, M., Guilherme, P., Sarmento, P., Ruivo, M., & Magriço, A. (2006). Spatial and temporal heterogeneity in the Alqueva reservoir, Guadiana River Portugal. Limnetica, 25(3–3), 161–176.Google Scholar
  45. Silva, H., Morais, M., Rosado, J., Serafim, A., Pedro, A., Sarmento, P., Fialho, A. (2011). South Portugal Reservoirs—Status and major concerns. The 12th International Specialized Conference on Watershed & River Basin Management. International Water Association, 13-16 September 2011, Recife, Pernambuco, Brazil, p. 8.Google Scholar
  46. Sokal, R. R., & Rohlf, F. J. (1995). Biometry—the principles and practice of statistics in biological research. New York: Freeman.Google Scholar
  47. Tuikka, A. I., Schmitt, C., Höss, S., Bandow, N., von der Ohe, P. C., de Zwart, D., et al. (2011). Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicology and Environmental Safety, 74, 123–131.CrossRefGoogle Scholar
  48. USEPA (1979). Chemistry Laboratory Manual for Bottom Sediments and Elutriate Testing. EPA-905-4-79-014 (NTIS PB 294596). EPA Region V. Chicago. IL.Google Scholar
  49. USEPA (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: Technical manual. EPA-823-B-01-002. EPA Region V. Chicago. IL.Google Scholar
  50. Ventura-Lima, J., de Castro, M. R., Acosta, D., Fattorini, D., Regoli, F., de Carvalho, L. M., et al. (2009). Effects of arsenic (As) exposure on the antioxidant status of gills of the zebrafish Danio rerio (Cypridinae). Comparative biochemistry and physiology—Part C: Toxicology & pharmacology, 149(4), 538–543.Google Scholar
  51. Wang, F., Leung, A. O. W., Wu, S. C., Yang, M. S., & Wong, M. H. (2009). Chemical and ecotoxicological analysis of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environmental Pollution, 157, 2082–2090.CrossRefGoogle Scholar
  52. WWFN (World Wide Fund for Nature) (1995). Case-study on the proposed dams scheme of Alqueva, Portugal. Update of 1992 Report.Google Scholar
  53. Zar, J.H. (1996). Biostatistical analysis. USA, DC: Prentice-Hall International, Englewood Cliff.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. Palma
    • 1
    • 2
    Email author
  • L. Ledo
    • 1
  • S. Soares
    • 3
    • 4
  • I. R. Barbosa
    • 5
  • P. Alvarenga
    • 1
  1. 1.Department of Applied Sciences and Technologies, Escola Superior AgráriaInstituto Politécnico de BejaBejaPortugal
  2. 2.Centro de Investigação Marinha e Ambiental (CIMA), FCT, Edifício 7, Piso 1Universidade do AlgarveFaroPortugal
  3. 3.Departamento de Engenharia, Escola Superior de Tecnologias e GestãoInstituto Politécnico de BejaBejaPortugal
  4. 4.GeobiotecUniversidade de AveiroAveiroPortugal
  5. 5.Centro de Estudos Farmacêuticos, Faculdade de FarmáciaUniversidade de Coimbra, Pólo das Ciências da SaúdeCoimbraPortugal

Personalised recommendations