Environmental Geochemistry and Health

, Volume 34, Issue 4, pp 503–512 | Cite as

Spatial distribution of calcium in food, water and soil and its possible influence on rickets disease in Northern Nigeria

Article

Abstract

Since the 1990s, children of the Gbagyi tribe in Northern Nigeria have been suffering severe rickets with an incidence of up to 40% in the children’s generation. The disease seems to be prevalent in an area of approximately 100 km2 south-east of Kaduna. According to broad medical studies in that area, there is no evidence for a genetic disposition but for a nutritional cause of the disease. A lack of calcium was found in blood and was calculated to originate from diet. We therefore checked parent material, soil, maize cobs (Zea mays) and drinking water for their specific Ca contents from a region with rickets problem (study area A) and compared the results to Ca amounts in similar samples from a region where rickets is unknown among the Gbagyi population (study area B). It thereby became apparent that there are no differences in mineralogical composition of the parent material between the study areas, but that Ca contents in soil, maize cobs and drinking water are 47.6%, 26.6%, respectively, 79.1% lower in study area A compared to study area B. This result suggests that there may indeed be a nutritionally and/or environmentally influence on rickets disease. Nevertheless, further research on this topic is required.

Keywords

Rickets Calcium Environmental cause study 

Notes

Acknowledgments

We are grateful to the nongovernmental organisation ‘Hope for the village child’ and Sister Rita Schwarzenberg as well as the Medical Mission Institute Würzburg for supporting our work in Nigeria and Germany. Thanks to the Institute of Physical Geography Würzburg, Julius-von-Sachs Institute for Biosciences Würzburg and Chair in Geodynamics and Geomaterial Research Würzburg for supporting laboratory analyses. The research was funded by ‘Universitätsbund Würzburg’.

References

  1. Abe, S. S., Oyediran, G. O., Masunaga, T., Yamamoto, S., Honna, T., & Wakatsuki, T. (2009). Soil development and fertility characteristics of inland valleys in the rain forest zone of Nigeria: Mineralogical composition and particle-size distribution. Pedosphere, 19(4), 505–514.CrossRefGoogle Scholar
  2. Adesiyun, A. A., Adekeye, J. O., Umoh, J. U., & Nadarajah, M. (1983). Studies on well water and possible health risks in Katsina, Nigeria. Journal of Hygiene. doi:10.1017/S0022172400028862.
  3. Ahn, P. M. (1970). West African soils. Oxford: University Press.Google Scholar
  4. Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment, 88, 153–160.CrossRefGoogle Scholar
  5. Asara, E. O., Shehu, Y., & Agishi, E. A. (1984). Preliminary studies on indigenous species for dry season grazing in the Northern Guinea Savanna zone of Nigeria. Tropical Grassland Journal, 18(3), 148–152.Google Scholar
  6. Bationo, A., Waswa, B., Kihara, J., & Kimetu, J. (2007). Advances in integrated soil fertility management in Sub-Saharan Africa. Challenges and opportunities. Dordrecht: Springer.CrossRefGoogle Scholar
  7. Belachew, T., Nida, H., Getaneh, T., Woldemariam, D., & Getinet, W. (2005). Calcium deficiency and causation of rickets in Ethiopian children. East African Medical Journal, 82(3), 153–159.Google Scholar
  8. Blatt, H., Tracy, R. J., & Owens, B. E. (2006). Petrology. Igneous, sedimentary and metamorphic. New York: Freeman.Google Scholar
  9. Bouis, H. E. (2002). Plant breeding: A new tool for fighting micronutrient malnutrition. Journal of Nutrition, 132, 491S–494S.Google Scholar
  10. Burhke, E., Creasy, L. E., Croke, J. F., Feret, F. R., Jenkins, R., Kanare, H. M., et al. (1998). Specimen preparation in X-ray fluorescence. In E. Burhke, R. Jenkins, & D. K. Smith (Eds.), A practical guide for preparation of specimen for X-ray fluorescence and X-ray diffraction analysis (pp. 59–122). Oxford: John Wiley & Sons.Google Scholar
  11. Cotruvo, J., & Bartram, J. (2009). Calcium and magnesium in drinking water. Public health significance. Geneva: World Health Organisation.Google Scholar
  12. Couppis, O. A., Emmert, W. K., Kitz, C., Vant Hoff, W., Drake, W. M., & Stich, A. (2006). The metabolic basis of a severe rickets-like deformity in Nigerian children. Endocrine Abstracts, 12, 14.Google Scholar
  13. Emchebe, M. A., Ellis-Jones, J., Schulz, S., Chikoye, D., Douthwaite, B., Kureh, I., Tarawali, G., Hussaini, M. A., Kormawa, P., & Sanni, A. (2004). Farmers’ perception of the striga problem and its control in Northern Nigeria. Experimental Agriculture. doi:10.1017/S0014479703001601.
  14. Emmert, W. K.(2009). Rachitis-ähnliche Symptome bei nigerianischen Kindern aus der Ethnie der Gbagyi in der südwestlichen Region Kadunas: Identifizierung des biochemischen Defekts, Sammeln von epidemiologischen Daten und Beschreibung des klinischen Bildes. Ressource document. University of Würzburg. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2010/4835/pdf/Doktorarbeit_4.0.pdf. Accessed 17 August 2010.
  15. Evberg, C. J., & Pettifor, J. M. (1986). Dietary calcium intake in rural black South African children. The relationship between calcium intake and calcium nutritional status. Human Nutrition. Clinical Nutrition, 40(1), 69–74.Google Scholar
  16. Ferré, E., Deleris, J., Bouchez, J. L., Lar, A. U., & Peucat, J. (1996). The Pan-African reactivation of eburnean and archaean provinces in Nigeria: Structural and isotopic data. Journal of the Geological Society, 153, 719–728.CrossRefGoogle Scholar
  17. Fischer, P. R., Rahman, A., Cimma, J. P., et al. (1999). Nutritional rickets without vitamin D deficiency in Bangladesh. Journal of Tropical Pediatrics, 45, 291–293.CrossRefGoogle Scholar
  18. Frossard, E., Bucher, M., Mächler, F., Mozafar, A., & Hurrell, R. (2000). Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 80, 861–879.CrossRefGoogle Scholar
  19. Govindaraju, K. (1989). Geostandard newsletter. Special Issue of Geostandard Newsletter, 13. Vandoeuvre: Centre de Recherches Pétrographiques et Géochimiques.Google Scholar
  20. Issaka, R. N., Ishida, F., Kubota, D., & Wakatsuku, T. (1996). Geographical distribution of selected soil fertility parameters of inland valleys in Western Africa. Geoderma, 75, 99–116.CrossRefGoogle Scholar
  21. Jaiyeoba, I. A. (2003). Changes in soil properties due to continuous cultivation in Nigerian semiarid Savannah. Soil & Tillage Research, 70, 91–98.CrossRefGoogle Scholar
  22. Jeziorski, A., Yan, N. D., Paterson, A. M., DeSellas, A. M. et al. (2008). The widespread threat of Calcium decline in fresh water. Science. doi:10.1126/science.1164949.
  23. Jones, M. J., & Wild, A. (1975). Soils of the West African Savanna. The maintenance and improvement if their fertility. Slough: Commonwealth Agricultural Bureaux.Google Scholar
  24. Kitz, C., Stich, A., Ebert, R., Jakob, F., Raab, P., & Sponholz, B. (2009). Rickets in Nigeria. Do geological and genetic factors play a role besides extreme calcium deficiency? Flug und Reisemedizin, 16(2), 76–80.CrossRefGoogle Scholar
  25. Kröner, A., Ekwueme, N., & Pidgeon, R. T. (2001). The Oldest rocks in Western Africa: shrimp zircon age for early archean migmatitic orthogneiss at Kaduna, Northern Nigeria. The Journal of Geology, 109, 399–406.CrossRefGoogle Scholar
  26. Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic Press.Google Scholar
  27. Maydell, H. J. (1990). Trees and shrubs of the sahel. Their characteristics and uses. Weikersheim: Margraf.Google Scholar
  28. McTanish, G. (1980). Harmattan dust deposition in Northern Nigeria. Nature, 286, 587–588.CrossRefGoogle Scholar
  29. Menkir, A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chemistry, 110, 454–464.CrossRefGoogle Scholar
  30. Munsell, (2000). Munsell soil color chart. New Windsor: Gretamacbeth.Google Scholar
  31. Njoku, B. O., Enwezor, W. O., & Onyenakwe, B. I. (1987). Calcium deficiency identified as an important factor limiting maize growth in acid ultisols of eastern Nigeria. Fertilizer Research, 14, 113–123.CrossRefGoogle Scholar
  32. Nriagu, J., Oleru, N. T., Cudjoe, C., & Chine, A. (1997). Lead poisoning of children in Africa, III. Kaduna, Nigeria. The Science of the Total Environment, 197, 13–19.CrossRefGoogle Scholar
  33. Nykvist, N. (2002). How common are calcium-poor soils in the tropics? AMBIO: A Journal of the Human Environment, 31(5), 445–447.Google Scholar
  34. Oginni, L. M., Worsfold, M., Sharp, C. A., Oyelami, O. A., Powell, D. E., & Davie, M. W. J. (1996). Plasma osteocalcin in healthy Nigerian children and in children with calcium-deficiency rickets. Calcified Tissue International. doi:10.1007/s002239900151.
  35. Okonofua, F., Gill, D. S., Alabi, Z. O., Thomas, M., Bell, J. L., & Dandona, P. (1991). Rickets in Nigerian children: A consequence of calcium malnutrition. Metabolism. doi:10.1016/0026-0495(91)90177-X.
  36. Oyo, O. M. (1996). Geological map of Nigeria. Scale 1:2 Mio. Abuja: Geological Survey of Nigeria.Google Scholar
  37. Ozgür, S., Sümer, H., & Koçoglu, G. (1996). Rickets and soil strontium. Archives of Disease in Childhood. doi:10.1136/adc.75.6.524.
  38. Pettifor, J. M., Ross, P., Wang, J., Moodley, G., & Couper-Smith, J. (1978). Rickets in children of rural origin in South Africa: Is low dietary calcium a factor? The Journal of Pediatrics. doi:10.1016/S0022-3476(78)80035-3.
  39. Pfitzner, M. A., Thacher, T. D., Pettifor, J. M., Zoakah, A. I., Lawson, J. O., Isichei, C. O., & Fischer, P. R. (1998). Absence of vitamin D deficiency in young Nigerian children. The Journal of Pediatrics. doi:10.1016/S0022-3476(98)70143-X.
  40. Preez du, J. W., & Barber, W. (1965). The distribution and chemical quality of groundwater in Northern Nigeria. Federal Republic of Nigeria, Ministry of Mine and Power, Geological Survey. 36. Kaduna: The Federal Republic of Nigeria.Google Scholar
  41. Riddell, J. C., & Campbell, D. J. (1986). Agricultural intensification and rural development: The Mandara Mountains of North Cameroon. African Studies Review, 29(3), 89–106.CrossRefGoogle Scholar
  42. Ritchey, K. D., Silva, J. E., & Costa, U. F. (1982). Calcium deficiency in clayey B horizons of savanna oxisols. Soil Science, 133(6), 378–382.CrossRefGoogle Scholar
  43. Rombo, G. O. (2010). Rickets in Rift Valley. Kenyatta University Nairobi. http://www.ku.ac.ke/images/stories/docs/publications/enviromental_human/rickets_in_R_Valley.pdf. Accessed 22 November 2010.
  44. Ross, A. C., Manson, J. E., Abrams, S. A., Aloia, J. F., Brannon, P. M., Clinton, S. K., Durazo-Arvizu, R. A., Gallagher, J. C., Gallo, R. L., Jones, G., Kovacs, C. S., Mayne, S. T., Rosen, C. J., & Shapses, S. A. (2011). The 2011 dietary reference intakes for calcium and vitamin D: What dietetics practitioners need to know. Journal of the American Dietetic Association. doi:10.1016/j.jada.2011.01.004.
  45. Sada, Y. (1996). Gbagyiza. History and culture of the Gbagyi speaking people. Abuja: Federal Capital Territory Council for Arts and Culture.Google Scholar
  46. Salau, M. A. (1984). The Gbagyi engagement with early colonialism. In F. Kalapo & K. O. Akurang-Parry (Eds.), African agency and European colonialism. Latitudes of negotiation and containment (pp. 105–110). Lanham: University Press of America.Google Scholar
  47. Schlüter, T. (2006). Geological atlas of Africa. With notes in stratigraphy, tectonics, economic geology, geohazards and geosites of each country. Berlin: Springer.Google Scholar
  48. Sharp, C. A., Oginni, L. M., Worsfold, M., Oyelami, O. A., Risteli, L., Risteli, J., & Davie, M. W. J. (1997). Elevated collagen turnover in Nigerian children with calcium-deficiency rickets. Calcified Tissue International. doi:10.1007/s002239900301.
  49. Smith, B. J. (1981). Slope evolution in the Gwari Hills, Kaduna State, Nigeria. Singapore Journal of Tropical Geography. doi:10.1111/j.1467-9493.1981.tb00119x.
  50. Subramanian, V. (1979). Quantitative analysis of elements in sediments and soils by X-ray fluorescence analysis. Clays and Clay Minerals, 27(4), 305.CrossRefGoogle Scholar
  51. Swallow, D. M. (2003). Genetics of lactase persistence and lactose intolerance. Annual Reviews of Genetics. doi:10.1146/annurev.genet.37.110801.143820.
  52. Thacher, T. D., Fischer, P. R., Isichei, C. O., & Pettifor, J. M. (2006b). Early response to vitamin D2 in children with calcium deficiency rickets. The Journal of Pediatrics. doi:10.1016/j.jpeds.2006.08.070.
  53. Thacher, T., Fischer, T. D., Strand, P. R., & Pettifor, J. M. (2006a). Nutritional rickets around the world. Annuals of Tropical Paediatrics. doi:10.1179/146532806X90556.
  54. Udossien, E. I., & Aremu, C. Y. (1991). Mineral composition of Nigerian foodstuffs. Journal of Food Composition and Analysis. doi:10.1016/0889-1575(91)90021-W.
  55. Wall, J. R. D. (Ed.). (1979). Land resource study. Land resources of central Nigeria. Agricultural development possibilities. Kaduna Plains. 28, 5B. Surrey: Land Resources Development Centre.Google Scholar
  56. Whitlow, J. R. (1980). Land use, population pressure and rock outcrops in the tribal areas of Zimbabwe Rhodesia. Zimbabwe Rhodesia Agricultural Journal, 77(1), 3–11.Google Scholar
  57. World Health Organisation. (1993). Guidelines for drinking-water quality (2nd ed.). Geneva: WHO.Google Scholar
  58. World Health Organisation. (2009). Calcium and magnesium in drinking water. Public health significance. Geneva: WHO.Google Scholar
  59. Yahmed, B. D. (2003). Atlas du Nigeria. Atlas du l’Afrique. Paris: Les Éditions J.A.Google Scholar
  60. Young, A. (1999). Is there really spare land? A critique of estimates of available cultivable land in developing countries. Environment, Development and Sustainability, 1, 3–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Physical GeographyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Physical GeographyUniversity of FrankfurtFrankfurtGermany

Personalised recommendations