Environmental Geochemistry and Health

, Volume 34, Issue 3, pp 375–390 | Cite as

Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China

  • Changxun Yu
  • Bo Peng
  • Pasi Peltola
  • Xiaoyan Tang
  • Shurong Xie
Original Paper


This paper examines the geochemical features of 8 soil profiles developed on metalliferous black shales distributed in the central parts of the South China black shale horizon. The concentrations of 21 trace elements and 8 major elements were determined using ICP-MS and XRF, respectively, and weathering intensity (W) was calculated according to a new technique recently proposed in the literature. The data showed that the black shale soils inherited a heterogeneous geochemical character from their parent materials. A partial least square regression model and EFbedrock (enrichment factor normalized to underlying bedrock) indicated that W was not a major control in the redistribution of trace metals. Barium, Sn, Cu, V, and U tended to be leached in the upper soil horizons and trapped by Al and Fe oxides, whereas Sb, Cd, and Mo with negative EF values across the whole profiles may have been leached out during the first stage of pedogenesis (mainly weathering of black shale). Compared with the Chinese average soils, the soils were strongly enriched in the potentially toxic metals Mo, Cd, Sb, Sn, U, V, Cu, and Ba, among which the 5 first listed were enriched to the highest degrees. Elevated concentrations of these toxic metals can have a long-term negative effect on human health, in particular, the soils in mining areas dominated by strongly acidic conditions. As a whole, the black shale soils have much in common with acid sulfate soils. Therefore, black shale soils together with acid sulfate soils deserve more attention in the context of metal exposure and human health.


Black shale soils Acid sulfate soils Mining Enrichment factor Heavy metal contamination China 



This study was supported by the National Scientific Foundation Committee of China grant number 40572172 and 41073095 and by the research and development platform Nova FoU in Oskarshamn, Sweden. Mr Xianglin Tu at the Guangzhou Institute of Geochemistry is thanked for help for the chemical analyses.


  1. Andriesse, W., & van Mensvoort, M. E. F. (2006). Acid sulfate soils: distribution and extent. In R. Lal (Ed.), Encyclopaedia of soil science. Boca Raton, FL: CRC, Taylor and Francis.Google Scholar
  2. Åström, M. E. (1998). Partitioning of transition metals in oxidised and reduced zones of sulphide-bearing fine-grained sediments. Applied Geochemistry, 13, 607–617.CrossRefGoogle Scholar
  3. Åström, M. E., & Björklund, A. (1995). Impact of acid sulphate soils on stream water geochemistry in western Finland. Journal of Geochemical Exploration, 55, 163–170.CrossRefGoogle Scholar
  4. Åström, M. E., Nystrand, M., Gustafsson, J. P., Österholm, P., Nordmyr, L., Reynolds, J. K., et al. (2010). Lanthanoid behaviour in an acidic landscape. Geochimica et Cosmochimica Acta, 74, 829–845.CrossRefGoogle Scholar
  5. Boman, A., Åström, M. E., & Fröjdö, S. (2008). Sulfur dynamics in boreal acid sulphate soils rich in metastable iron sulphide—the role of artificial drainage. Chemical Geology, 255, 68–77.CrossRefGoogle Scholar
  6. Boman, A., Fröjdö, S., Backlund, K., & Åström, M. E. (2010). Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochimica et Cosmochimica Acta, 74, 1268–1281.CrossRefGoogle Scholar
  7. Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.CrossRefGoogle Scholar
  8. Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006a). Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils. Geochimica et Cosmochimica Acta, 70, 5455–5468.CrossRefGoogle Scholar
  9. Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006b). Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environmental Science and Technology, 40, 1217–1222.CrossRefGoogle Scholar
  10. Chon, H. T., Cho, C. H., Kim, K. W., & Moon, H. S. (1996). The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Applied Geochemistry, 11, 69–76.CrossRefGoogle Scholar
  11. Dasch, E. J. (1969). Strontium isotope in weathering profiles, deep sea sediments and sedimentary rocks. Geochimica et Cosmochimica Acta, 33, 1521–1552.CrossRefGoogle Scholar
  12. Fältmarsch, R., Åström, M. E., & Vuori, K.-M. (2008). Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review. Boreal Environment Research, 13, 444–456.Google Scholar
  13. Fältmarsch, R., Österholm, P., Greger, M., & Åström, M. E. (2009). Metal concentrations in oats (Avena sativa L.) grown on acid sulphate soils. Agricultural and Food Science, 18, 45–56.CrossRefGoogle Scholar
  14. Fan, D. L., Yang, X. Z., Wang, L. F., & Cheng, N. S. (1973). Petrological and geochemical characteristics of a nickel-molybdenum-multi-element-bearing lower Cambrian black shale from a certain district in South China. Geochimica, 3, 143–168. (in Chinese with English abstract).Google Scholar
  15. Fang, W. X., Hu, R. Z., & Wu, P. W. (2002). Influence of black shales on soils and edible plants in the Ankang Area, Shaanxi Province, P. R. China. Environmental Geochemistry and Health, 24, 35–46.CrossRefGoogle Scholar
  16. Horan, M. F., Morgan, J. W., Grauch, R. L., Coveney, R. M., Murowchick, J. B., & Hulbert, L. J. (1994). Rhenium and osmium isotopes in black shales and Ni-Mo-PEG-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou province, China. Geochimica et Cosmochimica Acta, 58, 257–265.CrossRefGoogle Scholar
  17. Hrgi (Hunan Regional Geology Institute). (1972). Report of regional geology of Anhua (1:200000) (pp. 7–14). Geological Press, Beijing (in Chinese).Google Scholar
  18. Huang, W. K. (1989). Study of clay minerals and phyllo-metalmorphic minerals in shales of Sinian-Cambrian starta in Western Hunan. Hunan Geology, 8(1), 54–59. (in Chinese with English abstract).Google Scholar
  19. Lavergren, U., Åström, M. E., Bergbäck, B., & Holmstrom, H. (2009a). Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction. Geochemical, Exploration, or Environmental Analysis, 9, 71–79.CrossRefGoogle Scholar
  20. Lavergren, U., Åström, M. E., Falk, H., & Bergbäck, B. (2009b). Metal dispersion in groundwater in an area with natural and processed black shale-nationwide perspective and comparison with acid sulfate soils. Applied Geochemistry, 24, 359–369.CrossRefGoogle Scholar
  21. Lee, J. S., Chon, H. T., & Kim, K. W. (1998a). Migration and dispersion of trace elements in the rock-soil-plant system in areas underlain by black shales and slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 65, 61–78.CrossRefGoogle Scholar
  22. Lee, J. S., Chon, H. T., Kim, J. S., Kim, K. W., & Moon, H. S. (1998b). Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environmental Geochemistry and Health, 20, 135–147.CrossRefGoogle Scholar
  23. Macdonald, B. C. T., White, I., Åström, M. E., Keene, A. F., Melville, M. D., & Reynolds, J. K. (2007). Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry, 22, 2695–2705.CrossRefGoogle Scholar
  24. Mao, J. W., Lehmann, B., Andao, D., Guang, D. I., Ma, D. S., Wang, Y. T., et al. (2002). Re-Os dating on polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geological singnificance. Economic Geology, 17, 1535–1547.Google Scholar
  25. Nesbitt, H. W., & Markovics, G. (1997). Weathering of granodioritic crust, long term storage of elements in weathering profile, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8), 1653–1670.CrossRefGoogle Scholar
  26. Nordmyr, L., Österholm, P., & Åström, M. E. (2008). Estuarine behaviour of metal loads leached from coastal lowland Acid Sulphate soils. Marine Environmental Research, 66, 378–393.CrossRefGoogle Scholar
  27. Ohta, T., & Arai, H. (2007). Statistial empirical index of chemical weathering in igneous rocks: A new tool for evaluating degree of weathering. Chemical Geology, 240, 280–297.CrossRefGoogle Scholar
  28. Pašava, J., Kríbek, B., & Žák, K. (2003). Preliminary results of the study of toxic elements in soils and crop plants in areas of Ni-Mo black shale-hosted deposits (Zunyi region, south China). In D. Eliopoulos et al. (Eds.) Mineral exploration and substantial development (pp 53–56).Google Scholar
  29. Peng, B., Piestrzynski, A., Pieczonka, J., Xie, S. R., Xiao, M. L., Wang, Y. Z., et al. (2007). Mineralogical and geochemical constrains on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China. Environmental Geology, 52(7), 1277–1296.CrossRefGoogle Scholar
  30. Peng, B., Song, Z. L., Tu, X. L., Lv, H. Z., & Wu, F. C. (2004). Release of heavy metals during weathering of the Lower Cambrian black shales in western Hunan, China. Environmental Geology, 45(8), 1137–1147.CrossRefGoogle Scholar
  31. Peng, B., Tang, X. Y., Yu, C. X., Xie, S. R., Xiao, M. L., Song, Z., et al. (2009a). Heavy metal geochemistry of the acid mine drainage discharged from the Hejiacun uranium mine in central Hunan, China. Environmental Geology, 57(8), 421–434.CrossRefGoogle Scholar
  32. Peng, B., Tang, X. Y., Yu, C. X., Xu, L. S., Xie, S. R., Yang, G., et al. (2009b). Geochemical study of heavy metal contamination of soils derived from black shales at the HJC uranium mine in Central Hunan, China. Acta Geological Sinica, 83(1), 89–106. (in Chinese with English abstract).Google Scholar
  33. Peng, B., Wu, F. C., Xiao, M. L., Xie, S. R., Lu, H. Z., & Dai, Y. N. (2005). The resource functions and environmental effects of black shales. Bulletin of Mineralogy Petrology and Geochemistry, 24(2), 153–158. (in Chinese with English abstract).Google Scholar
  34. Peucker-Ehrenbrink, B., & Hannigan, R. (2000). Effects of black shale weathering on mobility of rhenium and platinum group elements. Geology, 28, 475–478.CrossRefGoogle Scholar
  35. Poňavič, M., Pašava, J., Vymazalová, A., Kříbek, B., Deng, H. L., Luo, T. J., et al. (2006). Fractionation of toxic trace elements in soils around Mo-Ni black shale-hosted minesite, Zunyi regional, southern China: Environmental implications. Bulletin of Geosciences, 81(3), 197–206.Google Scholar
  36. Reimann, C., & Filzoser, P. (1999). Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39(9), 1001–1014.CrossRefGoogle Scholar
  37. Selinus, O. S., & Esbensen, K. (1995). Separating anthropogenic from natural anomalies in environmental geochemistry. Journal of Geochemical Exploration, 55, 55–66.CrossRefGoogle Scholar
  38. Sudom, M. D., & Arnaud, R. J. S. T. (1971). Use of quartz, zirconium and titanium as indices in pedological studies. Canadian Journal of Soil Science, 51, 385–395.CrossRefGoogle Scholar
  39. Sundström, R., Åström, M., & Österholm, P. (2002). Comparison of the metal content in acid sulphate soil runoff and industrial effluents in Finland. Environmental Science and Technology, 36, 4269–4272.CrossRefGoogle Scholar
  40. Tang, X. Y., Peng, B., Yu, X. Y., Xie, S. R., Yang, G., Yin, C. Y., et al. (2009). Elemental geochemistry of soils derived from the Lower-Cambrian black shales in Anhua county, central Hunan (China). Acta Scientiae Circumstantiae, 29(12), 2623–2634. (in Chinese with English abstract).Google Scholar
  41. Tong, Y. M. (1990). Environmental pollutions from ore exploiting activities in Hunan province, China. Hunan Geology, 9(1), 11–14. (in Chinese).Google Scholar
  42. Tuttle, M. L. W., & Breit, G. N. (2009a). Weathering of New Albany shale, Kentucky: I. Weathering zones defined by mineralogy and major-element composition. Applied Geochemistry, 24, 1549–1564.CrossRefGoogle Scholar
  43. Tuttle, M. L. W., Breit, G. N., & Goldhaber, M. B. (2009b). Weathering of New Albany shale, Kentucky: II. Redistribution of minor and trace elements. Applied Geochemistry, 24, 1565–1578.CrossRefGoogle Scholar
  44. Walkley, A., & Black, C. A. (1965). Organic carbon. In C. A. Black (Ed.), Methods of soil analysis. Wisconsin, USA: American Society of Agronomy, BC.Google Scholar
  45. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.CrossRefGoogle Scholar
  46. Xie, S. R., Peng, B., Tang, X. Y., & Yu, C. X. (2007). Environmental geochemistry of the waste rock dump in the Taojiang manganese deposit, Hunan, China. Geological Bulletin of China, 26(3), 333–343. (in Chinese with English abstract).Google Scholar
  47. Xie, S. R., Peng, B., Tang, X. Y., Yu, C. X., & Wu, F. C. (2008). Characteristics of heavy metal contamination of soils derived from black shale in the central Hunan, China. Chinese Journal of Soil Science, 39(1), 137–142. (in Chinese with English abstract).Google Scholar
  48. Yan, M. C., Gu, T. X., Chi, Q. H., & Wang, C. S. (1997). Abundence of chemical elements of soils in China and supergenesis geochemistry characteristics. Geophysical and Geochemical Exploration, 21(3), 161–167. (in Chinese with English abstract).Google Scholar
  49. Yu, C. X., Peng, B., Tang, X. Y., Xie, S. R., Wu, F. C., Yin, C. Y., et al. (2008). The black shale and relative heavy metal contamination. Bulletin of Mineralogy, Petrology and Geochemistry, 27(2), 137–145. (in Chinese with English abstract).Google Scholar
  50. Yu, C. X., Peng, B., Tang, X. Y., Xie, S. R., Yang, G., Yin, C. Y., et al. (2009). Geochemical characteristics of soils derived from the Lower-Cambrian black shales distributed in Central Hunan, China. Acta Petrologica Sinica, 46(4), 557–570. (in Chinese with English abstract).Google Scholar
  51. Žák, K., Pašava, J., Vymazalová, A. L. C., & Zeng, M. (2003). Ni-Mo-PEG rich black shales of South China: Preliminary results from the isotope study of related barite and carbonates. In D. Eliopoulos et al. (Eds.) Mineral exploration and substantial development (pp 861–864).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Changxun Yu
    • 1
    • 2
  • Bo Peng
    • 1
  • Pasi Peltola
    • 2
  • Xiaoyan Tang
    • 1
  • Shurong Xie
    • 3
  1. 1.Faculty of Resource and Environment ScienceHunan Normal UniversityChangshaChina
  2. 2.School of Natural SciencesLinnaeus UniversityKalmarSweden
  3. 3.College of Geoscience, East China Institute of TechnologyFuzhouChina

Personalised recommendations