Advertisement

Environmental Geochemistry and Health

, Volume 33, Issue 4, pp 399–408 | Cite as

The potential of spatial information in human biomonitoring by example of two German environmental epidemiology studies

  • Gunther Schmidt
  • Roland Pesch
  • Winfried Schröder
  • André Conrad
  • Marike Kolossa-Gehring
  • Stefan Feigenspan
  • Lorenz Dobler
  • Gerhard A. Wiesmüller
  • Manfred Birke
  • Jens Utermann
Original paper

Abstract

This study aimed at statistically investigating the association between the internal exposure of children and young adults to uranium (U) and epidemiologically relevant external determinants of exposure. The investigation was performed with data from two studies within the framework of the German health-related environmental monitoring program: The German Environmental Survey for Children (GerES IV) conducted by the Federal Environment Agency (Umweltbundesamt) with data on 1,780 children 3–14 years of age and their home environment and the German Environmental Specimen Bank (ESB, section: human specimens) with data on 2,253 students 20–29 years of age. Both studies provided data on the U levels in human urine for all probands. GerES IV furthermore provided an extensive environmental and demographic database on, e.g., U levels in drinking water. The data from GerES IV and ESB were linked by GIS to spatially relevant exposure information, including background values of U in stream sediments and in upper and lower soils, U levels in mosses and particulate matter in the lower atmosphere, precipitation and elevation as well as forest density. Bivariate correlation analysis and two decision tree models showed moderate but significant associations between U in human urine and U levels in drinking water, stream sediments and upper and lower soils. Future investigations considering additional epidemiologically relevant data sets may differentiate the results. Furthermore, the sample design of future environmental epidemiology studies should take the spatial evaluation of the data into greater account.

Keywords

Decision trees Environmental monitoring Exposure GIS Human biomonitoring Uranium 

Notes

Acknowledgments

We thank the Federal Environment Agency in Dessau-Roßlau, the Environmental Specimen Bank, section: human specimens, in Münster and the Federal Institute for Geosciences and Natural Resources in Hanover for data provision and scientific advice. Moreover, we are grateful for the financial support of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and the Federal Ministry of Education and Research. Thanks are also due to the Robert Koch Institute for conducting the GerES IV field work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aschpurwis, B. I. K, & Behrens GmbH. (2001). BIK-Regionen. Methodenbeschreibung zur Aktualisierung 2000. http://www.bik-gmbh.de/texte/BIK-Regionen2000.pdf. Accessed 26 May 2010.
  2. Babisch, W., Neuhauser, H., Thamm, H., & Seiwert, M. (2009). Blood pressure of 8–14 year old children in relation to traffic noise at home—results of the German Environmental Survey for Children (GerES IV). Science of the Total Environment, 407(22), 5839–5843. doi: 10.1016/j.scitotenv.2009.08.016.CrossRefGoogle Scholar
  3. Becker, K., Seiwert, M., Angerer, J., Kolossa-Gehring, M., Hoppe, H.-W., Ball, M., et al. (2006). GerES IV pilot study: Assessment of the exposure of German children to organophosphorus and pyrethroid pesticides. International Journal of Hygiene and Environmental Health, 209(3), 221–233. doi: 10.1016/j.ijheh.2005.12.002.CrossRefGoogle Scholar
  4. Becker, K., Conrad, A., Kirsch, N., Kolossa-Gehring, M., Schulz, C., Seiwert, M., et al. (2007a). German Environmental Survey (GerES): Human biomonitoring as a tool to identify exposure pathways. International Journal of Hygiene and Environmental Health, 210(3–4), 267–269. doi: 10.1016/j.ijheh.2007.01.010.CrossRefGoogle Scholar
  5. Becker, K., Ullrich, D., Conrad, A., Nagorka, R., Seiwert, M., Schulz, C., et al. (2007b). German environmental survey: Exposure from indoor air and indoor dust. Pollution Atmosphérique, 194, 147–149. http://cat.inist.fr/?aModele=afficheN&cpsidt=17933266. Accessed 26 May 2010.Google Scholar
  6. Bierman, P., Lewis, M., Ostendorf, B., &Tanner, J. (2010). Spatial and temporal patterns in coastal water quality. Ecological Indicators (online first). doi:  10.1016/j.ecolind.2009.11.001.
  7. Birke, M., & Rauch, U. (2008). Uranium in stream water of Germany. In L. J. de Kok & E. Schnug (Eds.), Loads and fate of fertilizer-derived uranium (pp. 79–90). Leiden: Bachhuys.Google Scholar
  8. Breiman, L., Friedman, J. A., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth.Google Scholar
  9. Clark, L. A., & Pregibon, D. (1992). Tree-based models. In J. M. Chambers & T. J. Hastie (Eds.), Statistical models in S (pp. 377–419). New York: Chapman & Hall.Google Scholar
  10. Conrad, A., Schulz, C., Seiwert, M., Becker, K., Ullrich, D., & Kolossa-Gehring, M. (2010). German environmental survey IV: Children’s exposure to environmental tobacco smoke. Toxicology Letters, 192(1), 79–83. doi: 10.1016/j.toxlet.2009.01.023.CrossRefGoogle Scholar
  11. Dahlkamp, F. J. (1993). Uranium ore deposits. Berlin: Springer.Google Scholar
  12. Dobler, L., Oganowski, M., Eckard, R., Günsel, A., Müller, A., Kemper, F. H., et al. (2008). Rapid evaluation of human biomonitoring data using pattern recognition systems. Journal of Toxicology and Environmental Health, Part A, 71, 814–824.CrossRefGoogle Scholar
  13. Fanshawe, T. R., Diggle, P. J., Rushton, S., Sanderson, R., Lurz, P. W. W., Glinianaia, S. V., et al. (2008). Modelling spatio-temporal variation in exposure to particulate matter: A two-stage approach. Environmetrics, 19(6), 549–566.CrossRefGoogle Scholar
  14. Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119–127.CrossRefGoogle Scholar
  15. Kleppin, L., Pesch, R., & Schröder, W. (2008). CHAID-models on boundary conditions of metal accumulation in mosses collected in Germany 1990, 1995 and 2000. Atmospheric Environment, 42(21), 5220–5231. doi: 10.1016/j.atmosenv.2008.02.058.CrossRefGoogle Scholar
  16. Koch, H. M., Becker, K., Wittassek, M., Seiwert, M., Angerer, J., & Kolossa-Gehring, M. (2007). Di-n-butylphthalte and Butylbezylphthalate (BBzP)—urinary metabolite levels and estimated daily intakes: Pilot study for the German Environmental Survey on children (GerES IV). Journal of Exposure Science and Environmental Epidemiology, 17, 378–387. http://www.nature.com/jes/journal/v17/n4/full/7500526a.html. Accessed 26 May 2010.
  17. Kolossa-Gehring, M., Becker, K., Conrad, A., Lüdecke, A., Riedel, S., & Seiwert, M. (2007). German environmental survey for children (GerES IV)–first results. International Journal of Hygiene and Environmental Health, 210(5), 535–540. doi: 10.1016/j.ijheh.2007.07.018.CrossRefGoogle Scholar
  18. Konietzka, R., Dieter, H. H., & Voss, J. U. (2005). Vorschlag für einen gesundheitlichen Leitwert für Uran in Trinkwasser. Umweltmed Forsch Prax, 10(2), 133–143.Google Scholar
  19. Kurth, B. M., Kamtsiuris, P., Hölling, H., Schlaud, M., Dölle, R., Ellert, U., et al. (2008). The challenge of comprehensively mapping children’s health in a nation-wide health survey: Design of the German KiGGS-Study. BMC Public Health 8(196), http://www.biomedcentral.com/1471-2458/8/196. Accessed 26 May 2010.
  20. Magidson, J. (1993). SPPS for windows CHAID release 6.0. Chicago: SPSS Inc.Google Scholar
  21. Markert, B., Wünschmann, S., Fränzle, S., Wappelhorst, O., Weckert, V., Breulmann, G., et al. (2008). On the road from biomonitoring to human health aspects—monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. International Journal of Environmental Pollution, 32, 486–498.CrossRefGoogle Scholar
  22. Merkel, B., Planer-Friedrich, B., & Wolkersdorfer, C. (2002). Uranium in the aquatic environment. Heidelberg: Springer.Google Scholar
  23. Morgan, J. A., & Sonquist, J. N. (1963). Problems in the analysis of drug data and a proposal. Journal of the American Statistical Association, 58, 415–434.CrossRefGoogle Scholar
  24. Oxynos, K., Schmitzer, J., Schramm, K.-W., & Kettrup, A. (1994). The German Environmental Specimen Bank (GESB): Concepts and results of chlorinated hydrocarbons in environmental samples. Chemosphere, 28(2), 313–321. doi: 10.1016/0045-6535(94)90128-7.CrossRefGoogle Scholar
  25. Pesch, R., Schröder, W., & Schmidt, G. (2007). Nitrogen accumulation in forests. Exposure monitoring by mosses. The Scientific World, 7(1), 151–158. doi: 10.1100/tsw.2007.11.Google Scholar
  26. Pesch, R., Schmidt, G., Schröder, W., & Weustermann, I. (2009a). Application of CART in ecological landscape mapping: Two case studies. Ecological Indicators. (online first). doi:  10.1016/j.ecolind.2009.07.003.
  27. Pesch, R., Schmidt, G., Schröder, W., Conrad, A., Kolosa-Gehring, M., Feigenspan, S., et al. (2009b). Das potenzial raumbezogener Daten im human-biomonitoring am Beispiel des Kinder-Umwelt-surveys. In J. Strobl, T. Blaschke, & G. Griesebner (Eds.), Angewandte Geoinformatik 2009 (pp. 248–257). Heidelberg: Wichmann.Google Scholar
  28. Rüdel, H., Schröder, W., von der Trenck, K. T., & Wiesmüller, G. A. (2009). Chemical and biological environmental monitoring. Series. Preface. Environmental Science and Pollution Research, 16(5), 483–485. doi: 10.1007/s11356-009-0192-7.CrossRefGoogle Scholar
  29. Schmidt, G., Pesch, R., Schröder, W., Wiesmüller, G. A., Dobler, L., Feigenspan, S., et al. (2009). Verknüpfung von Daten des Human-Biomonitorings der Umweltprobenbank und der Umweltbeobachtung am Beispiel von Uran. In J. Strobl, T. Blaschke, & G. Griesebner (Eds.), Angewandte Geoinformatik 2009 (pp. 272–281). Heidelberg: Wichmann.Google Scholar
  30. Schulz, C., Conrad, A., Becker, K., Kolossa-Gehring, M., Seiwert, M., & Seifert, B. (2007). Twenty years of the German Environmental Survey (GerES), Human biomonitoring–temporal and spatial (West Germany/East Germany) differences in population exposure. International Journal of Hygiene and Environmental Health, 210(3–4), 271–297. doi: 10.1016/j.ijheh.2007.01.034.CrossRefGoogle Scholar
  31. Siewers, U., Herpin, U., & Straßburger, S. (2000). Schwermetalleinträge in Deutschland. Moos-Monitoring 1995. Teil 2. Geologisches Jahrbuch, SD 3. Stuttgart: Bornträger.Google Scholar
  32. Spearman, C. (1908). The method of right and wrong cases (constant stimuli) without Gauss’ formulae. British Journal of Psychology, 2, 227–242.Google Scholar
  33. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.CrossRefGoogle Scholar
  34. Stevens, S. S. (1951). Mathematics, measurement and psychophysics. In S. S. Stevens (Ed.), Handbook of experimental psychology (pp. 1–149). New York: Wiley.Google Scholar
  35. Stevens, S. S. (1975). Psychophysics. New York: Wiley.Google Scholar
  36. UBA (Federal Environment Agency). (2005). Uran und Human-Biomonitoring: Stellungnahme der Kommission Human-Biomonitoring des Umweltbundesamtes. BundesgesundheitsblGesundheitsforsch, Gesundheitsschutz, 48(7), 822–827. doi:  10.1007/s00103-005-1069-7.
  37. Utermann, J., & Fuchs, M. (2008). Uranium in German soils. In L. J. De Kok & E. Schnug (Eds.), Loads and fate of fertilizer-derived uranium (pp. 33–45). Leiden: Backhuys.Google Scholar
  38. Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. New York: Wiley.CrossRefGoogle Scholar
  39. Wiesmüller, G. A., Eckard, R., Dobler, L., Günsel, A. K., Oganowski, M., Schröter-Kermani, C., et al. (2007). The Environmental specimen bank for human tissues as part of the German environmental specimen bank. International Journal of Hygiene and Environmental Health, 210, 299–305. doi: 10.1016/j.ijheh.2007.01.036.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gunther Schmidt
    • 1
  • Roland Pesch
    • 1
  • Winfried Schröder
    • 1
  • André Conrad
    • 2
  • Marike Kolossa-Gehring
    • 2
  • Stefan Feigenspan
    • 3
  • Lorenz Dobler
    • 4
  • Gerhard A. Wiesmüller
    • 4
  • Manfred Birke
    • 5
  • Jens Utermann
    • 5
  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany
  2. 2.Federal Environment AgencyBerlinGermany
  3. 3.Federal Environment AgencyDessau-RoßlauGermany
  4. 4.Environmental Specimen Bank, Section: human specimensWestphalian Wilhelms University MünsterMünsterGermany
  5. 5.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations