Environmental Geochemistry and Health

, Volume 33, Issue 6, pp 595–611 | Cite as

Bioelements and mineral matter in human livers from the highly industrialized region of the Upper Silesia Coal Basin (Poland)

  • Lucyna Lewińska-Preis
  • Mariola Jabłońska
  • Monika J. Fabiańska
  • Andrzej Kita
Original Paper


Contents of mineral substance, silica, and a range of bioelements and toxic elements (Mg, Na, K, Ca, Ba, Zn, Cr, P Al, Cd, Mn Cu, Ni, Pb, Sr, Fe) in 38 livers of donors from the Upper Silesia Coal Basin (southern Poland) are presented. Elements were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with the exception of silica that was estimated colorimetrically. Concentrations, concentration variability, and correlations between selected liver components determined for the total population are related to donor age, gender, and lesion occurrence. Correlations between particular elements were found using correlation coefficient values and the Fisher transformation. Mineral substance in the livers lies in the range 0.40–5.03 wt%. With increasing donor age, mineral-matter content decreases to a minimum for the 40–60 years of age range. Microbioelement contents show a similar tendency, while microbioelements and toxic elements reach maximum contents in donors aged 60–80 years. All elements show content decreases in livers from the oldest group (>80 years). Silica contents increase with age. Variability of element contents is lowest in the older subpopulations. Livers with lesions show lower element contents and variability. The results are compared to literature data for regions of Poland assumed to be of low pollution and to data from comparable regions in Japan and Hungary. Up to our knowledge, this paper is the first work describing the total contents, as distinct from contents of selected elements, of mineral substance in human livers.


Liver Mineral substance Silica Bioelements Toxic trace elements 



We wish to thank the firm DIAGNO-MED who provided post-mortem tissue material. The authors would also like to thank Dr Pádhraig Kennan, University College Dublin, for language help.


  1. Amarowicz, R., Sulik, M., Markiewicz, K., Korczakowska, B., & Brykalska, A. (1991). Lead contents in the liver and kidney of the inhabitants of the city of Białystok and of its vicinity. Rocznik PZH, XLII, 277–281.Google Scholar
  2. Andrews, J. E., Brimblecombe, P., Jickells, T. D., Liss, P. S., & Reid, B. J. (2004). An introduction to environmental chemistry (2nd ed.). Oxford: Blackwell Science.Google Scholar
  3. Anke, M., Henning, A., Grun, M., Groppel, B., & Ludke, H. (1976). Cadmium and its influence on plants, animals and man with regard to geological and industrial conditions. Trace Substances in Environmental Health, 10, 403–409.Google Scholar
  4. Barile, F. A. (2003). Clinical toxicology: Principles and mechanisms. Boca Raton: Informa HealthCare, CRC Press.Google Scholar
  5. Bem, E. M., Kaszper, B. W., Orłowski, Cz., Piotrowski, J. K., Wójcik, G., & Żołnowska, E. (1993a). Cadmium, zinc and metallothionein levels in the kidney and liver of humans from Central Poland. Environmental monitoring and assessment (Vol. 25, pp. 1–13). Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Bem, E. M., Piotrowski, J. K., & Turzyńska, E. (1993b). Cadmium, zinc and copper levels in the kidneys and liver of the inhabitants of north-eastern Poland. Polish Journal of Occupational Medicine, 6(2), 133–141.Google Scholar
  7. Benes, B., Jakubec, K., Smid, J., & Spevackova, V. (2000). Determination of thirty-two elements in human autopsy tissue. Biological Trace Element Research, 75, 195–203.CrossRefGoogle Scholar
  8. Berg, J., Tymoczko, J., & Stryer, L. (2002). Biochemistry (1024 pp). New York: W.H. Freeman and Company.Google Scholar
  9. Bona, M. A., Castellano, M., Plaza, L., & Fernandez, A. (1992). Determination of heavy metals in human liver. Human and Experimental Toxicology, 11(5), 311–313.CrossRefGoogle Scholar
  10. Brown, C. J., Chenery, S. R. N., Smith, B., Tomkins, A., Roberts, G. J., Serunjogi, L., et al. (2002). A sampling and analytical methodology for dental trace element analysis. The Analyst, 127, 319–323.CrossRefGoogle Scholar
  11. Carvalho, M. L., Casaca, C., Marques, J. P., Pinheiro, T., & Cunha, A. S. (2001). Human teeth elemental profiles measured by synchrotron X-ray fluorescence: Dietary habits and environmental influence. X-Ray Spectrometry, 30, 190–193.CrossRefGoogle Scholar
  12. Central Statistical Office, Poland (2008). ISSN CD-ROM 1734-6266, Indeks 8308/02.Google Scholar
  13. Da Silva, J. J. R. F., & Williams, R. J. P. (1991). The biological chemistry of the elements: The inorganic chemistry of life. Oxford: Clarendon Press. ISBN 0-19-855598-9.Google Scholar
  14. Evenson, M. A., & Anderson, C. T., Jr. (1975). Ultramicro analysis for copper, cadmium, and zinc in human liver tissue by use of atomic absorption spectrophotometry and the heated graphite tube atomizer. Clinical Chemistry, 21, 537–543.Google Scholar
  15. Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika, 10, 507–521.Google Scholar
  16. Flynn, A., Mansour, G. G., Strain, W. H., & Pones, W. J. (1975). Copper and zinc with ablative endocrine surgery in breast cancer. Trace Substances in Environmental Health, 9, 427–439.Google Scholar
  17. Frieden, E. (1974). The evolution of metals as essential elements. Advances in Experimental Medicine and Biology, 48, 1–32.Google Scholar
  18. Hatano, R., Ebara, M., Fukuda, H., Yoshikawa, M., Sugiura, N., Kondo, F., et al. (2000). Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. Journal of Gastroenterology and Hepatology, 15, 786–791.CrossRefGoogle Scholar
  19. Honda, R., & Nogawa, K. (1987). Cadmium, zinc and copper relationships in kidney and liver of humans exposed to environmental cadmium. Archives of Toxicology, 59, 437–442.CrossRefGoogle Scholar
  20. Jakubowski, M., & Trzcinka-Ochocka, M. (2005). Biological monitoring of exposure: Trends and key developments. Journal of Occupational Health, 48, 22–48.CrossRefGoogle Scholar
  21. Jugdaohsingh, R., Anderson, S. H., Tucker, K. L., Elliot, H., Kiel, D. P., Thompson, R. P., et al. (2002). Dietary silicon intake and absorption. American Journal of Clinical Nutrition, 75, 887–893.Google Scholar
  22. Jugdaohsingh, R., Reffitt, D. M., Oldham, C., Day, J. P., Fifield, L. K., Thompson, R. P., et al. (2000). Oligomeric but not monomeric silica prevents aluminum absorption in humans. American Journal of Clinical Nutrition, 71, 944–949.Google Scholar
  23. Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of trace elements (Biogeochemia pierwiastków śladowych, in Polish). Warsaw: Wydawnictwo Naukowe PWN.Google Scholar
  24. Kuczyńska, J., & Biziuk, M. (2007). Selenium biochemistry and its monitoring in biological samples. Ecological Chemistry and Engineering, 14(51), 47–64.Google Scholar
  25. Menke, A., Muntner, P., Silbergeld, E. K., Platz, E. A., & Gullar, E. (2009). Cadmium levels in urine and mortality among US adults. Environmental Health Perspectives, 117, 190–196.Google Scholar
  26. Milman, N., Laursen, J., Pødenphant, J., & Asnaes, S. (1986). Trace elements in normal and cirrhotic human liver tissue. I. Iron, copper, zinc, selenium, manganese, titanium and lead measured by X-ray fluorescence spectrometry. Liver, 6, 111–117.Google Scholar
  27. Milman, N., Laursen, J., Pødenphant, J., & Staun-Olsen, P. (1983). Iron, copper, zinc and selenium in human liver tissue measured by X-ray fluorescence spectrometry. Scandinavian Journal of Clinical and Laboratory Investigation, 43, 691–697.CrossRefGoogle Scholar
  28. Murray, R. K., Rodwell, V. W., Bender, D., Botham, K. M., Weil, P. J., & Kennelly, P. J. (2009). Harper’s illustrated biochemistry (28th ed.). New York: McGraw-Hill Medical.Google Scholar
  29. Patriarca, M., Lyon, T. D., Delves, H. T., Howatson, A. G., & Fell, G. S. (1999). Determination of low concentrations of potentially toxic elements in human liver from newborns and infants. The Analyst, 124, 1337–1343.CrossRefGoogle Scholar
  30. Pawlikowski, M. (2003). Minerals in human blood vessels and their dissolution in vitro. In H. C. W. Skinner & A. R. Berger (Eds.), Geology and health: Closing the gap (pp. 155–158). Oxford University Press: Oxford.Google Scholar
  31. Perry, H. M., Perry, E. F., & Erlanger, J. N. (1973). A comparison of intra- and interhepatic variability of trace metal concentrations in normal men. Trace Substances in Environmental Health, 7, 281–288.Google Scholar
  32. Petering, H. G. (1974). The effect of cadmium and lead on copper and zinc metabolism. Trace element metabolism in animals (Vol. 2, pp. 311–325). Baltimore: University Park Press.Google Scholar
  33. Piotrowski, J. K., Orłowski, Cz., & Bem, E. M. (1995). Poziomy kadmu w nerkach i w wątrobie osób zmarłych w różnych regionach kraju. Medycyna Pracy, XLVI(Suppl 5), 97–107.Google Scholar
  34. Prasad, M. N. V., Sajwan, K. S., & Naidu, R. (2006). Trace elements in the environment: Biogeochemistry, biotechnology, and bioremediation. Boca Raton: CRC Press. Taylor and Francis Group. 726 pp.Google Scholar
  35. Quarterman, J., Morrison, J. N., & Carey, L. F. (1973). The influence of dietary calcium and phosphate on lead metabolism. Trace Substances in Environmental Health, 7, 347–352.Google Scholar
  36. Rahil-Khazen, R., Bolann, B. J., Myking, A., & Ulvik, R. J. (2002a). Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES). Journal of Trace Elements in Medicine and Biology, 16, 15–25.CrossRefGoogle Scholar
  37. Rahil-Khazen, R., Bolann, B. J., & Ulvik, R. J. (2002b). Correlations of trace element levels within and between different normal autopsy tissues analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). BioMetals, 15, 87–98.CrossRefGoogle Scholar
  38. Rink, W. J., & Swarcz, H. P. (1995). Test for diagenesis in tooth enamel-ESR dating signals and carbonate contents. The Journal of Archaeological Science, 22, 251–255.CrossRefGoogle Scholar
  39. Rodriguez-Moreno, F., Gonzalez-Reimers, E., Santolaria-Fernandez, F., Galindo-Martin, L., Hernandez-Torres, O., Batista-Lopez, N., et al. (1997). Zinc, copper, manganese and iron in chronic alcoholic liver diseases. Alcohol, 14, 39–44.CrossRefGoogle Scholar
  40. Rose, S., & Mileusnic, R. (1999). The chemistry of life. Harmondsworth: Penguin Press Science. ISBN 0-14-027273-9.Google Scholar
  41. Schwarz, K., & Milne, D. B. (1972). Growth-promoting effects silicon in rats. Nature, 239, 333–334.CrossRefGoogle Scholar
  42. Seaborn, C. D., & Nielsen, F. H. (2002). Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver. Biological Trace Element Research, 89, 251–261.CrossRefGoogle Scholar
  43. Shim, H., & Harris, Z. L. (2003). Genetic defects in copper metabolism. Journal of Nutrition, 113, 1527S–1531S.Google Scholar
  44. Skinner, H. C. W., Kempner, E., & Pak, C. Y. C. (1972). Preparation of the mineral phase of bone using ethylene diamine extraction. Calcified Tissue Research, 10, 257–268.CrossRefGoogle Scholar
  45. Stamoulis, I., Kouraklis, G., & Theocharis, S. (2007). Zinc and the liver: An active interaction. Digestive Diseases and Sciences, 52, 1595–1612.CrossRefGoogle Scholar
  46. Syversen, T. L. M. (1975). Cadmium-binding in human liver and kidney. Archives of Environmental Health, 30, 158–161.Google Scholar
  47. Takacs, S., & Tatar, A. (1991). Trace elements in the environmental and in human organs: Analysis according to domicile and sex. Zeitschrift für die gesamte Hygiene und ihre Grenzgebiete, 37, 53–55.Google Scholar
  48. Thiele, D. J. (2003). Integrating trace element metabolism from cell to the whole organism. Journal of Nutrition, 133, 1579S–1580S.Google Scholar
  49. Treble, R. G., Thompson, T. S., & Lynch, H. R. (1998). Determination of cooper, manganese and zinc in human liver. BioMetals, 11, 49–53.CrossRefGoogle Scholar
  50. Underwood, E. J. (1971). Trace elements in human and animal nutrition. New York: Academic Press.Google Scholar
  51. Vather, M., Berglund, M., Akesson, A., & Liden, C. (2002). Metals and women’s health. Environmental Research, 88, 145–155.CrossRefGoogle Scholar
  52. Wolf, F. I., & Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24, 3–9.CrossRefGoogle Scholar
  53. Yilmaz, O. (2002). Cadmium and lead levels in human liver and Sidney Samales obtained from Bursa Province. International Journal of Environmental Health Research, 12, 181–185.CrossRefGoogle Scholar
  54. Yoo, Y. C., Lee, S. K., Yang, J. Y., In, S. W., Kim, K. W., Chung, K. H., Chung, M. G., Choung, S. Y. (2002). Organ distribution of heavy metals in autopsy material from Normal Korean. Journal of Health Science, 48, 186–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lucyna Lewińska-Preis
    • 1
  • Mariola Jabłońska
    • 1
  • Monika J. Fabiańska
    • 1
  • Andrzej Kita
    • 2
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSilesiaPoland
  2. 2.Faculty of Mathematics, Physics and Chemistry, Institute of ChemistryUniversity of SilesiaSilesiaPoland

Personalised recommendations