Environmental Geochemistry and Health

, Volume 33, Issue 5, pp 477–493

Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France)

  • Aurélie Pelfrêne
  • Christophe Waterlot
  • Muriel Mazzuca
  • Catherine Nisse
  • Géraldine Bidar
  • Francis Douay
Original Paper

Abstract

The extractability of Cd, Pb, and Zn was investigated in contaminated agricultural topsoils located in an area highly affected by the past atmospheric emissions of two smelters in northern France in order to assess their mobility and human bioaccessibility. The determination of Cd, Pb, and Zn bioaccessibility (Unified Barge Method, in vitro test) was made to evaluate the absolute trace element (TE) bioavailability. The results highlighted differences in bioaccessibility between Cd, Pb, and Zn (Cd > Pb > Zn). The mean values of the bioaccessible fractions of Cd, Pb, and Zn during the gastric phase were 82, 55, and 33%, respectively, of the pseudototal concentrations, whereas during the gastrointestinal phase, the bioaccessible fractions of metals decreased to 45, 20, and 10%, respectively. Stepwise multiple regression analysis showed that human bioaccessibility was affected by various physicochemical parameters (i.e., sand, carbonates, organic matter, assimilated P, free Al oxides, and pseudototal Fe contents). Sequential extractions were performed as an indication of the TE availability in these soils. Cadmium occurred in the more available fractions, Pb was mostly present as bound by oxides, and a significant contribution to the pseudototal Zn concentration was defined as the unavailable residual form related to the crystalline structures of minerals. The concepts of bioavailability and bioaccessibility are important for quantifying the risks associated with exposure to environmental pollutants and providing more realistic information for human health.

Keywords

Trace elements Contaminated soil Bioaccessibility In vitro digestion Sequential extractions 

References

  1. Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., & Barberis, R. (2006). Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air, and Soil Pollution, 173, 315–338.CrossRefGoogle Scholar
  2. Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35, 1615–1634.CrossRefGoogle Scholar
  3. Ahumada, I., Mendoza, J., & Ascar, L. (1999). Sequential extraction of heavy metals in soils irrigated with wastewater. Communications in Soil Science and Plant Analysis, 30, 1507–1519.CrossRefGoogle Scholar
  4. Alloway, B. J. (1995). Heavy metals in soils (2nd ed., p. 368). New-York: Blacker Academic and Professional.Google Scholar
  5. Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Shah, A. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar lake. Chemosphere, 70, 1845–1856.CrossRefGoogle Scholar
  6. Basta, N., & Gradwohl, R. (2000). Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. Journal of Soil Contamination, 9, 149–164.CrossRefGoogle Scholar
  7. Beesley, L., Moreno-Jimērez, E., Clemente, R., Lepp, N., & Dickinson, N. (2009). Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158, 155–160.CrossRefGoogle Scholar
  8. Bosso, S. T., & Enzweiler, J. (2007). Bioaccessible lead in soils slag, and mine wastes from an abandoned mining district in brazil. Environmental Geochemistry and Health, 30, 219–229.CrossRefGoogle Scholar
  9. Button, M., Watts, M. J., Cave, M. R., Harrington, C. F., & Jenkin, G. T. (2009). Earthworms and in vitro physiologically-based extraction tests: Complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environmental Geochemistry and Health, 31, 273–282.CrossRefGoogle Scholar
  10. Caboche, J. (2009). Validation d’un test de mesure de bioaccessibilité—application à 4 éléments traces métalliques dans les sols: As, Cd, Pb et Sb. Ph D Thesis. Institut National Polytechnique de Lorraine, Nancy, 249 pp.Google Scholar
  11. Cave, M., Wragg, J., Klinck, B., Grön, C., Oomen, T., Van de Wiele, T., et al. (2–6 September, 2006). Preliminary assessment of a unified bioaccessibility method for arsenic in soils. International conference in epidemiology and environmental exposure, Paris.Google Scholar
  12. Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead, and zinc in soils from Southwest Poland. Journal of Environment Quality, 25, 69–79.Google Scholar
  13. Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., da Costa Duarte, A., Díaz-Barrientos, E., et al. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.CrossRefGoogle Scholar
  14. Davis, A., Drexler, J. W., Ruby, M. V., & Nicholson, A. (1993). Micromineralogy of mine wastes in relation to lead bioavailability. Environmental Science and Technology, 27, 1415–1425.CrossRefGoogle Scholar
  15. Davis, A., Ruby, M. V., Goad, P., Eberle, S., & Chryssoulis, S. (1997). Mass balance on surface-bound mineralogic, and total lead concentrations as related to industrial aggregate bioaccessibility. Environmental Science and Technology, 31, 37–44.CrossRefGoogle Scholar
  16. Davranche, M., & Bollinger, J. C. (2000). Release of metals from iron oxyhydroxides under reductive conditions: Effects of metal/solid interactions. Journal of Colloid and Interface Science, 232, 165–173.CrossRefGoogle Scholar
  17. Day, J. P., Fergusson, J. E., & Chee, T. M. (1979). Solubility and potential toxicity of lead in urban street dust. Bulletin of Environmental Contamination and Toxicology, 23, 497–502.CrossRefGoogle Scholar
  18. Denys, S., Caboche, J., Tack, K., & Delalain, P. (2007). Bioaccessibility of lead in high carbonate soils. Journal of Environmental Science and Health A, 42, 1331–1339.CrossRefGoogle Scholar
  19. Denys, S., Tack, K., Caboche, J., & Delalain, P. (2009). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74, 711–716.CrossRefGoogle Scholar
  20. Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., et al. (2007). Contamination of urban soils in an area of northern France polluted by dust emissions of two smelters. Water, Air, and Soil Pollution, 188, 247–260.CrossRefGoogle Scholar
  21. Duggan, M. J., Inskip, M. J., Rundle, S. A., & Moorcroft, J. S. (1985). Lead in playground dust and on hands of schoolchildren. Science of the Total Environment, 44, 65–79.CrossRefGoogle Scholar
  22. Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.CrossRefGoogle Scholar
  23. Gleyzes, C., Tellier, S., & Astruc, M. (2002). Single and sequential extraction procedures for soil and sediment partitioning analysis. In Ph. Quevauviller (Ed.) Cambridge, UK: RSC.Google Scholar
  24. Grøn, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil. Environmental project No. 840, Technology Programme for Soil and Groundwater Contamination. Danish Environmental Protection Agency, 113 pp.Google Scholar
  25. Guo, G. L., Zhou, Q. X., Koval, P. V., & Belogolova, G. A. (2006). Speciation distribution of Cd, Pb, Cu and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Australian Journal of Soil Research, 44, 135–142.CrossRefGoogle Scholar
  26. Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.CrossRefGoogle Scholar
  27. Hamel, S. C., Ellickson, K. M., & Lioy, P. J. (1999). The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: Mass-balance and soil recapture. Science of the Total Environment, 244, 273–283.CrossRefGoogle Scholar
  28. Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 23, 78–93.CrossRefGoogle Scholar
  29. Hickey, M. G., & Kittrick, J. A. (1984). Chemical partitioning of Cd, Ni and Zn in soils and sediments containing high levels of heavy metals. Journal of Environment Quality, 13, 189–197.Google Scholar
  30. Jamali, M. K., Kazi, T. G., Arain, M. B., & Afridi, H. I. (2007a). Heavy metal from soil and domestic sewage sludge and their transfer to Sorghum plants. Environmental Chemistry Letters, 5, 209–218.CrossRefGoogle Scholar
  31. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Adil, R. S. R. (2006). Correlation of total and extractable heavy metals from soil and domestic sewage sludge and their transfer to maize (Zea mays L.) plants. Toxicological and Environmental Chemistry, 88, 619–632.CrossRefGoogle Scholar
  32. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Memon, A. R. (2007b). Heavy metal contents of vegetables grown in soil, irrigated with mixtures of waste-water and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. Journal of Agronomy and Crop Science, 193, 218–228.CrossRefGoogle Scholar
  33. Juhasz, A., Smith, E., & Naidu, R. (2003). Estimation of human availability of arsenic in contaminated soils. In A. Langley, M. Gilbey, & B. Kennedy (Eds.), Proceedings of the Fifth National Workshop on the Assessment of Site Contamination (pp. 183–194). Adelaide, Australia.Google Scholar
  34. Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126, 225–233.CrossRefGoogle Scholar
  35. Kabala, C., & Singh, B. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environment Quality, 30, 485–492.CrossRefGoogle Scholar
  36. Karczewska, A. (1996). Metal species distribution in top- and sub- soil in an area affected by copper smelter emissions. Applied Geochemistry, 11, 35–42.CrossRefGoogle Scholar
  37. Kheboian, C., & Bauer, C. F. (1987). Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Analytical Chemistry, 59, 1417–1423.CrossRefGoogle Scholar
  38. Knight, B. P., Chaudri, A. M., McGrath, S. P., & Giller, K. E. (1998). Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environmental Pollution, 99, 293–298.CrossRefGoogle Scholar
  39. Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron and manganese in soils near a copper smelter. Soil Science, 135, 101–109.CrossRefGoogle Scholar
  40. Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.CrossRefGoogle Scholar
  41. Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.CrossRefGoogle Scholar
  42. Lothenbach, B., Furrer, G., Schärli, H., & Schulin, R. (1999). Immobilization of zinc and cadmium by montmorillonite compounds: Effect of aging and subsequent acidification. Environmental Science and Technology, 33, 2945–2952.CrossRefGoogle Scholar
  43. Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environment Quality, 26, 259–264.Google Scholar
  44. Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40, 2812–2818.CrossRefGoogle Scholar
  45. McBride, M. B., Sauvé, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337–346.CrossRefGoogle Scholar
  46. Medlin, E. A. (1997). An in vitro method for estimating the relative bioavailability of lead in humans. Master’s Thesis, Department of Geological Sciences, University of Colorado at Boulder.Google Scholar
  47. Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.CrossRefGoogle Scholar
  48. Merian, E., Anke, M., Ihnat, M., & Stoeppler, M. (2004). Elements and their compound in the environment–Vol 2: Metals and their compounds. Weinheim, Germany: Wiley-VCH.Google Scholar
  49. Moreno-Jimēnez, E., Peñalosa, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution on soils surrounding on abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.CrossRefGoogle Scholar
  50. Mushak, P. (1991). Gastro-intestinal absorption of lead in children and adults: Overview of biological and biophysico-chemical aspects. Chemical Speciation and Bioavailability, 3, 87–104.Google Scholar
  51. Narwal, R. P., Singh, B. R., & Salbu, B. (1999). Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Communications in Soil Science and Plant Analysis, 30, 1209–1230.CrossRefGoogle Scholar
  52. Oomen, A. G. (2000). Determinants of oral bioavailability of soil-borne contaminants (p. 128). Utrecht: Universiteit Utrecht.Google Scholar
  53. Oomen, A. G., Bradon, E. F. A., Swartjes, F. A., & Sips, A. J. (2006). How can information on oral bioavailability improve human health risk assessment for lead-contaminated soils? 711701042/2006 Rr, RIVM, 108 pp.Google Scholar
  54. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Schoeters, G., Verstraete, W., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.CrossRefGoogle Scholar
  55. Oomen, A. G., Rompelberg, C. J., Bruil, M. A., Dobbe, C. J., Pereboom, D. P., & Sips, A. J. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44, 281–287.CrossRefGoogle Scholar
  56. Paustenbach, D. J. (2000). The practice of exposure assessment: A state of the art review. Journal of Toxicology and Environmental Health Part B, 3, 179–291.CrossRefGoogle Scholar
  57. Pickering, W. F. (1986). Metal ion speciation–soils and sediments (a review). Ore Geology Reviews, 1, 83–146.CrossRefGoogle Scholar
  58. Pierzynsky, G. M., Sims, J. T., & Vance, G. F. (2005). Soils and environmental quality. New York, USA: CRC Press, Taylor and Francis.Google Scholar
  59. Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.CrossRefGoogle Scholar
  60. Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology, 6, 495–604.CrossRefGoogle Scholar
  61. Ramos, L., Heinandez, L. M., & Gonzales, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from Donana National Park. Journal of Environment Quality, 23, 50–57.Google Scholar
  62. Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., et al. (2000). Application of modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), completed by a three-year stability study acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.CrossRefGoogle Scholar
  63. Reimann, C., & Filzmoser, P. (1998). Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.CrossRefGoogle Scholar
  64. Rieuwerts, J. S., Farago, M. E., Cikrt, M., & Bencko, V. (2000). Differences in lead bioavailability between a smelting and a mining area. Water, Air, and Soil Pollution, 122, 203–229.CrossRefGoogle Scholar
  65. Rodriguez, R. R., & Basta, N. T. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.CrossRefGoogle Scholar
  66. Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.Google Scholar
  67. Roussel, H., Waterlot, C., Pelfrêne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by the atmospheric emissions of two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58, 945–954.CrossRefGoogle Scholar
  68. Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., et al. (1993). Development of an in vitro screening-test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 26, 1242–1248.CrossRefGoogle Scholar
  69. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.CrossRefGoogle Scholar
  70. Sahuquillo, A., López-Sánchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., et al. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.CrossRefGoogle Scholar
  71. Sánchez, G., Moyano, A., & Muñez, C. (1999). Forms of cadmium, lead, and zinc in polluted mining soils and uptake by plants (Soria province, Spain). Communications in Soil Science and Plant Analysis, 30, 1385–1402.CrossRefGoogle Scholar
  72. Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (1996). Programme de recherches concertees (in French): Etude d’un secteur pollué par les métaux. Typologie et cartographie des sols, inventaire des polluants minéraux, étude de la migration verticale de Cd, Pb et Zn. Rapport Conseil Régional Nord-Pas de Calais—Secrétariat d’Etat à la recherche—ISA—INRA, Lille, 29 pp.Google Scholar
  73. Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389.CrossRefGoogle Scholar
  74. Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air, and Soil Pollution, 135, 173–194.CrossRefGoogle Scholar
  75. Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions (2nd ed.). New York, USA: Wiley.Google Scholar
  76. Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59, 225–238.CrossRefGoogle Scholar
  77. Tiller, K. G. (1989). Heavy metals in soils and their environmental importance. Advances in Soil Science, 9, 113–142.Google Scholar
  78. Van de Wiele, T. R., Oomen, A. G., Wragg, J., Cave, M., Minekus, M., Hack, A., et al. (2007). Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health A, 42, 1203–1211.CrossRefGoogle Scholar
  79. Violante, A., Ricciardella, M., & Pigna, M. (2003). Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of inorganic ligands. Water, Air, and Soil Pollution, 145, 289–306.CrossRefGoogle Scholar
  80. Waterlot, C., Bidar, G., Douay, F., & Daurangeon, F. (2008). Analysis of trace elements in solution, assessment of a background compensation technique on the as interference in the Cd analysis. Spectra Analyse, 261, 48–52.Google Scholar
  81. Waterlot, C., Douay, F., Pruvot, C., & Ciesielski, H. (12–14 December, 2006). Assessment of the mobility and the phytoavailability of heavy metals in kitchen garden soils: Effect of a phosphatic amendement. Difpolmine Conference (pp. 1–7). Bordeaux, France.Google Scholar
  82. Wixson, B. G., & Davies, B. E. (1994). Guidelines for lead in soil: Proposal of the society of environmental geochemistry and health. Environmental Science and Technology, 28, 26–31.CrossRefGoogle Scholar
  83. Wragg, J., & Cave, M. R. (2003). In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review. P5-062/TR/01, British Geological Survey, 33 pp.Google Scholar
  84. Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003). Factors controlling the bioaccessibility of Arsenic(V) and Lead(II) in soil. Soil and Sediment Contamination, 12, 165–179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Aurélie Pelfrêne
    • 1
    • 2
  • Christophe Waterlot
    • 1
    • 2
  • Muriel Mazzuca
    • 1
    • 3
  • Catherine Nisse
    • 1
    • 3
    • 4
  • Géraldine Bidar
    • 1
    • 2
  • Francis Douay
    • 1
    • 2
  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.Groupe ISA, Equipe Sols et Environnement, Laboratoire Génie Civil et géoEnvironnement Lille Nord de France, EA 4515Lille CedexFrance
  3. 3.UDSL, EA 4483, Impact de l’Environnement Chimique sur la Santé HumaineLilleFrance
  4. 4.CHULille, Service de Pathologie Professionnelle et EnvironnementLilleFrance

Personalised recommendations