Skip to main content
Log in

Effect of arsenic species on the growth and arsenic accumulation in Cucumis sativus

  • Original paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The effects of arsenic (As) species, such as As(III), As(V) and dimethylarsinic acid (DMA), on the accumulation of As in cucumber (Cucumis sativus), as well as on its growth in a soil mesocosm were evaluated. When Cucumis sativus was cultivated in soils contaminated with 20 and 50 mg/kg of As(III), As(V) or DMA for 40 days, the growth was markedly inhibited by the inorganic As (As(III) and As(V)) rather than the organic As (DMA). Irrespective of the As species, the As concentrations accumulated in Cucumis sativus increased with increasing As concentration in the soil. The As bioaccumulation factors from soil into the tissue of Cucumis sativus were 17.5–35.4, 29.3–42.7 and 17.6–25.7 for As(III), As(V) and DMA, respectively. In addition, the As translocation factors from the roots to shoots were 0.025–0.031, 0.018–0.032 and 0.014–0.026 for As(III), As(V) and DMA, respectively. In conclusion, Cucumis sativus mainly accumulated As in its roots rather than its shoots and easily accumulated inorganic rather than organic As from the soil into its tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrea, L. H., Malcolm, R. S., Damien, J., Klerk, W., Bastone, E. B., Gerostamoulos, J., et al. (2004). Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environmental Geochemistry and Health, 26, 27–36.

    Article  Google Scholar 

  • Carbonell-Barrachina, A. A., Burló, F., Valero, D., López, E., Martínez-Romero, D., & Martínez-Sánchez, F. (1999). Arsenic toxicity and accumulation in turnip as affected by arsenical chemical speciation. Journal of Agricultural and Food Chemistry, 47, 2288–2294.

    Article  CAS  Google Scholar 

  • Cheng, S. (2003). Heavy metal pollution in China: origin, pattern and control. Environmental Science and Pollution Research, 10, 192–198.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos, a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Helgesen, H., & Larsen, E. H. (1998). Bioavailability and speciation of arsenic in carrots grown in contaminated soil. The Analyst, 123, 791–796.

    Article  CAS  Google Scholar 

  • Hong, S. H., Choi, S. A., Yoon, H., Cho, K. S. (2010). Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture. Environmental Geochemistry and Health. doi:10.1007/s10653-010-9350-6

  • Jiang, Q. Q., & Singh, B. R. (1994). Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water, Air, and Soil pollution, 74, 321–343.

    CAS  Google Scholar 

  • Koch, I., Feldmann, J., Wang, L., Andrewes, P., Reimer, K. J., & Cullen, W. R. (1999). Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Science of the Total Environment, 236, 101–117.

    Article  CAS  Google Scholar 

  • Liang, H. M., Lin, T. H., Chiou, J. M., & Yeh, K. C. (2009). Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environmental Pollution, 157, 1945–1952.

    Article  CAS  Google Scholar 

  • Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Current Science, 70, 976–986.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Marin, A. R., Masscheleyn, P. H., & Patrick, W. H. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil, 139, 175–183.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H., Jr. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.

    CAS  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29–43.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Macnair, M. R. (1992). Suppression of the high-affinity phosphate uptake system: A mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 43, 519–524.

    Article  CAS  Google Scholar 

  • Melo, E. E. C., Costa, E. T. S., Guilhermea, L. R. G., Faquina, V., & Nascimentob, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168, 479–483.

    Article  CAS  Google Scholar 

  • Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162–175.

    Article  CAS  Google Scholar 

  • Patel, K. S., Shrivas, K., Brandt, R. N., Jakubowski, W. C., & Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health, 27, 131–145.

    Article  CAS  Google Scholar 

  • Pyles, R. A., & Woolson, E. A. (1982). Quantitation and characterization of arsenic compounds in vegetables grown in arsenic acid treated soil. Journals of Agricultural and Food Chemistry, 30, 866–870.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Schmöger, M. E. V., Oven, M., & Grill, E. (2000). Detoxification of arsenic by phytochelatins in plants. Plant Physiology, 122, 793–801.

    Article  Google Scholar 

  • Singh, N., & Ma, L. Q. (2006). Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environmental Pollution, 141, 238–246.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: a review. Advances in Agronomy, 64, 149–195.

    Article  CAS  Google Scholar 

  • Tamaki, S., & Frankenberger, W. T., Jr. (1992). Environmental biochemistry of arsenic. In G. W. Ware (Ed.), Reviews of environmental contamination and toxiciology (pp. 79–110). New York: Springer-Verlag.

    Google Scholar 

  • TlustoÅ¡, P., Goessler, W., Száková, J., & Balík, J. (2002). Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Applied Organometallic Chemistry, 16, 216–220.

    Article  Google Scholar 

  • Tu, C., Ma, L. Q., & Luongo, T. (2004). Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil, 258, 9–19.

    Article  CAS  Google Scholar 

  • Tu, C., Ma, L. Q., Zhang, W., Cai, Y., & Harris, W. G. (2003). Arsenic species and leach ability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environmental Pollution, 124, 223–230.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Wang, C., & Sun, X. (2007). Arsenic accumulation by ferns: A fild survey in southern china. Environmental Geochemistry and Health, 29, 169–177.

    Article  CAS  Google Scholar 

  • Yang, L. S., Peterson, P. J., Williams, W. P., Wang, W. Y., Hou, S. F., & Tan, J. A. (2002). The relationship between exposure to arsenic concentrations in drinking water and the development of skin lesions in farmers from Inner Mongolia, China. Environmental Geochemistry and Health, 24, 293–303.

    Article  CAS  Google Scholar 

  • ZabÅ‚udowska, E., Kowalska, J., Jedynak, L., Wojas, S., SkÅ‚odowska, A., & Antosiewicz, D. M. (2009). Search for a plant for phytoremediation-what can we learn from field and hydroponic studies? Chemosphere, 77, 301–307.

    Article  Google Scholar 

  • Zhao, F. J., & McGrath, S. P. (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12, 373–380.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., & Rosen, B. P. (2009). Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Current Opinion in Biotechnology, 20, 220–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (MEST) (KRF-2008-C00388). Sun Ah Choi was financially supported by the NRL program (R0A-2008-000-20044-0) of the NRF, MEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.H., Choi, S.A., Lee, MH. et al. Effect of arsenic species on the growth and arsenic accumulation in Cucumis sativus . Environ Geochem Health 33 (Suppl 1), 41–47 (2011). https://doi.org/10.1007/s10653-010-9351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9351-5

Keywords

Navigation