Advertisement

Environmental Geochemistry and Health

, Volume 32, Issue 4, pp 327–334 | Cite as

Pollution magnet: nano-magnetite for arsenic removal from drinking water

  • Cafer T. Yavuz
  • J. T. Mayo
  • Carmen Suchecki
  • Jennifer Wang
  • Adam Z. Ellsworth
  • Helen D’Couto
  • Elizabeth Quevedo
  • Arjun Prakash
  • Laura Gonzalez
  • Christina Nguyen
  • Christopher Kelty
  • Vicki L. Colvin
Original Paper

Abstract

Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible “everyday” chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.

Key words

Arsenic remediation Drinking water Kitchen synthesis Magnetite nanocrystals Open source software Underdeveloped countries 

Notes

Acknowledgments

We thank NSF for its support of the Center for Biological and Environmental Nanotechnology (EEC-0647452). We also acknowledge with gratitude the Office of Naval Research (N00014-04-1-0003), and the U.S. Environmental Protection Agency Star Program (RD-83253601-0) for funding. C.T.Y. thanks the Robert A. Welch Foundation ©-1342) for a graduate fellowship. C.T.Y. would like to thank the organizers of the International Congress on Production of Safe Water, January 21-23, 2009, Izmir, Turkey for the invitation.

References

  1. Acharyya, S. K., Chakraborty, P., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401(6753), 545.CrossRefGoogle Scholar
  2. Ahmed, M. F., Ahuja, S., et al. (2006). Epidemiology—Ensuring safe drinking water in Bangladesh. Science, 314(5806), 1687–1688.CrossRefGoogle Scholar
  3. Al-Salim, N., Young, A. G., et al. (2007). Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents: Solvent’s role in evolution of the optical and structural properties. Chemistry of Materials, 19(21), 5185–5193.CrossRefGoogle Scholar
  4. Asokan, S., Krueger, K. M., et al. (2005). The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology, 16(10), 2000–2011.CrossRefGoogle Scholar
  5. Ball, P. (2005). Arsenic-free water still a pipedream. Nature, 436(7049), 313.CrossRefGoogle Scholar
  6. Bhattacharjee, Y. (2007). Toxicology—A sluggish response to humanity’s biggest mass poisoning. Science, 315(5819), 1659–1661.CrossRefGoogle Scholar
  7. Chakraborty, A. K., & Saha, K. C. (1987). Arsenical dermatosis from tubewell water in West-Bengal. Indian Journal of Medical Research, 85, 326–334.Google Scholar
  8. Gan, H. L., Man, Y. B. C., et al. (2005). Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chemistry, 89(4), 507–518.CrossRefGoogle Scholar
  9. Harvey, C. F., Swartz, C. H., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.CrossRefGoogle Scholar
  10. Hossain, M. A., Sengupta, M. K., et al. (2005). Ineffectiveness and poor reliability of arsenic removal plants in West Bengal, India. Environmental Science and Technology, 39(11), 4300–4306.CrossRefGoogle Scholar
  11. Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.CrossRefGoogle Scholar
  12. Jana, N. R., Chen, Y. F., et al. (2004). Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of Materials, 16(20), 3931–3935.CrossRefGoogle Scholar
  13. Kelty, C. (2008). Two bits: The cultural significance of free software. Durham, NC: Duke University Press.Google Scholar
  14. Lounsbury, M., Kelty, C., et al. (2009). Toward Open Source Nano: Arsenic Removal and Alternative Models of Technology Transfer. Advances in the Study of Entrepreneurship, Innovation and Economic Growth, 19, 51–78. G. D. Libecap (ed). Bingley, UK: Emerald Group.Google Scholar
  15. Mayo, J. T., Yavuz, C., et al. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1–2), 71–75.CrossRefGoogle Scholar
  16. Misawa, T., Hashimot, K., et al. (1974). Mechanism of formation of iron-oxide and oxyhydroxides in aqueous-solutions at room-temperature. Corrosion Science, 14(2), 131–149.CrossRefGoogle Scholar
  17. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1–2), 1–53.CrossRefGoogle Scholar
  18. Nickson, R., McArthur, J., et al. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700), 338.CrossRefGoogle Scholar
  19. National Policy for Arsenic Mitigation (NPAM) (2004). Available at: http://www.sdnpbd.org/sdi/policy/doc/arsenic_policy.pdf. Accessed 14 July 2009
  20. Park, J., An, K. J., et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3(12), 891–895.CrossRefGoogle Scholar
  21. Roca, A. G., Morales, M. P., et al. (2006). Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Transactions on Magnetics, 42(10), 3025–3029.CrossRefGoogle Scholar
  22. Sapra, S., Rogach, A. L., et al. (2006). Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. Journal of Materials Chemistry, 16(33), 3391–3395.CrossRefGoogle Scholar
  23. Shannon, M. A., Bohn, P. W., et al. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.CrossRefGoogle Scholar
  24. Sun, S. H., & Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticies. Journal of the American Chemical Society, 124(28), 8204–8205.CrossRefGoogle Scholar
  25. Sun, S. H., Zeng, H., et al. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 126(1), 273–279.CrossRefGoogle Scholar
  26. Twidwell, L. G., McCloskey, J., et al. (1999). Technologies and potential technologies for removing arsenic from process and mine wastewater. Warrendale, PA: Warrendale.Google Scholar
  27. Weber, S. (2004). The success of open source. Boston, MA: Harvard University Press.Google Scholar
  28. Yavuz, C. T., Mayo, J. T., et al. (2006). Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 314(5801), 964–967.CrossRefGoogle Scholar
  29. Yean, S., Cong, L., et al. (2005). “Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.CrossRefGoogle Scholar
  30. Yu, W. W., & Falkner J. C., et al. (2004). Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chemical Communications, (20), 2306–2307.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cafer T. Yavuz
    • 1
  • J. T. Mayo
    • 1
  • Carmen Suchecki
    • 1
  • Jennifer Wang
    • 1
  • Adam Z. Ellsworth
    • 1
  • Helen D’Couto
    • 1
  • Elizabeth Quevedo
    • 1
  • Arjun Prakash
    • 2
  • Laura Gonzalez
    • 1
  • Christina Nguyen
    • 1
  • Christopher Kelty
    • 3
  • Vicki L. Colvin
    • 1
    • 2
  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA
  3. 3.Department of AnthropologyRice UniversityHoustonUSA

Personalised recommendations