Environmental Geochemistry and Health

, Volume 32, Issue 2, pp 129–146 | Cite as

Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective

  • Pankaj Kumar
  • Manish KumarEmail author
  • A. L. Ramanathan
  • Maki Tsujimura
Original Paper


Arsenic contamination in groundwater is of increasing concern because of its high toxicity and widespread occurrence. This study is an effort to trace the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain of India through major ion chemistry, arsenic speciation, sediment grain-size analyses, and multivariate statistical techniques. The study focuses on the distinction between the contributions of natural weathering and anthropogenic inputs of arsenic with its spatial distribution and seasonal variations in the plain of the state Bihar of India. Thirty-six groundwater and one sediment core samples were collected in the pre-monsoon and post-monsoon seasons. Various graphical plots and statistical analysis were carried out using chemical data to enable hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. Results suggest that the groundwater is characterized by slightly alkaline pH with moderate to strong reducing nature. The general trend of various ions was found to be Ca2+ > Na+ > Mg2+ > K+ > NH4 +; and HCO3  > Cl > SO4 2− > NO3  > PO4 3− > F in both seasons. Spatial and temporal variations showed a slightly higher arsenic concentration in the pre-monsoon period (118 μg/L) than in the post-monsoon period (114 μg/L). Results of correlation analyses indicate that arsenic contamination is strongly associated with high concentrations of Fe, PO4 3−, and NH4 + but relatively low Mn concentrations. Further, the enrichment of arsenic is more prevalent in the proximity of the Ganges River, indicating that fluvial input is the main source of arsenic. Grain size analyses of sediment core samples revealed clay (fine-grained) strata between 4.5 and 7.5 m deep that govern the vertical distribution of arsenic. The weathering of carbonate and silicate minerals along with surface-groundwater interactions, ion exchange, and anthropogenic activities seem to be the processes governing groundwater contamination, including with arsenic. Although the percentage of wells exceeding the permissible limit (50 μg/L) was less (47%) than that reported in Bangladesh and West Bengal, the percentage contribution of toxic As(III) to total arsenic concentration is quite high (66%). This study is vital considering that groundwater is the exclusive source of drinking water in the region and not only makes situation alarming but also calls for immediate attention.


Arsenic Gangetic Plain Groundwater Health Hydrogeochemical processes India Mobilization and transport Nitrate contamination Grain-size analysis 



First author (PK) would like to thank Indian Council of Medical Research (ICMR), Government of India, for giving a fellowship and grant for my research work. The authors also acknowledge the Department of Science and Technology (DST), under the Government of India for their financial support.


  1. Acharyya, S. K. (2004). Arsenic levels in groundwater from quaternary alluvium in the Ganga Plain and the Bengal basin, Indian subcontinent: Insights into influence of stratigraphy. Gondwana Research, 8(1), 55–66. doi: 10.1016/S1342-937X(05)70262-8.CrossRefGoogle Scholar
  2. Acharyya, S. K., & Shah, B. A. (2004). Risk of arsenic contamination in groundwater affecting Ganga alluvial Plain, India? Environmental Health Perspectives, 112, A19–A20.CrossRefGoogle Scholar
  3. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, M. A., Bhuyian, H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200. doi: 10.1016/j.apgeochem.2003.09.006.CrossRefGoogle Scholar
  4. American Public Health Association (APHA). (1995). Standard methods for the examination of water and wastewater (19th ed., 1467 pp.). Washington DC: American Public Health Association.Google Scholar
  5. Ben, D. S., Berner, Z., Chandrasekharam, D., & Karmakar, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 18, 1417–1434. doi: 10.1016/S0883-2927(03)00060-X.CrossRefGoogle Scholar
  6. Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contamination of groundwater in alluvial aquifers from Delta Plain, eastern India: Option for safe drinking supply. International Journal of Water Resources Development, 13, 79–92. doi: 10.1080/07900629749944.CrossRefGoogle Scholar
  7. Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). NY: Prentice Hall.Google Scholar
  8. Brömssen, M. V., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., et al. (2007). Targeting low-arsenic aquifers in Matlab Upazila, southeastern Bangladesh. Science of the Total Environment, 379, 121–132.CrossRefGoogle Scholar
  9. Brömssen, M. V., Larsson, S. H., Bhattacharya, P., Hasan, M. A., Ahmed, K. M., Jakariya, M., et al. (2008). Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, southeastern Bangladesh—implications for targeting low-As aquifers. Journal of Contaminant Hydrology, 99, 137–149. doi: 10.1016/j.jconhyd.2008.05.005.CrossRefGoogle Scholar
  10. Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., et al. (2003). Arsenic groundwater contamination in middle Ganga Plain, Bihar, India: A future danger? Environmental Health Perspectives, 111, 1194–1201.Google Scholar
  11. Chaurasia, O. P., Kumari, C., & Ankita, S. (2007). Genotoxic effect of ground water salts rich in fluoride. Cytologia, 72(2), 141–144.CrossRefGoogle Scholar
  12. Datta, D. K., & Subramanian, V. (1994). Texture and mineralogy of sediments from the Ganges–Brahmaputra–Meghna river system in the Bengal basin and their environmental implications. Environmental Geology, 30(3/4), 181–188.Google Scholar
  13. Domenico, P. A. (1972). Concepts and models in groundwater hydrology. New York: McGraw–Hill.Google Scholar
  14. Gebel, T. (2000). Confounding variables in the environmental toxicology of arsenic. Toxicology, 144, 155–162. doi: 10.1016/S0300-483X(99)00202-4.CrossRefGoogle Scholar
  15. Griffiths, J. C. (1967). Scientific methods in analysis of sediments. New York: McGraw Hill.Google Scholar
  16. Harvey, C., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N. E., Yu, W., Ashraf Ali, M., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.CrossRefGoogle Scholar
  17. Huh, Y., Tsoi, M. Y., Zaitiser, A., & Edward, J. N. (1998). The fluvial geochemistry of the river of eastern Siberia. I. Tributaries of Lena River draining the sedimentation platform of the Siberia Craton. Geochimica et Cosmochimica Acta, 62, 1657–1676. doi: 10.1016/S0016-7037(98)00107-0.CrossRefGoogle Scholar
  18. Huq, S. M. I., Ara, Q. A. J., Islam, K., Zaher, A., & Naidu, R. (2001). The possible contamination from arsenic through food chain. In: Bhattacharya, P., Jacks, G., Khan, A. A. (eds.). Groundwater arsenic contamination in the Bengal delta Plain of Bangladesh. Proceedings of the KTH-Dhaka University Seminar (pp. 9–96). KTH Special Publication, TRITA-AMI Report 3084.Google Scholar
  19. Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Resources, 34, 4304–4312.Google Scholar
  20. Jakariya, M., Choudhary, M., Tareq, M. A. H., & Ahmed, J. (1998). BARC: Village health workers can test tubewell water for arsenic. Bangladesh Rural Advancement Committee. Available at:
  21. Karim, M., Komori, Y., & Alam, M. (1997). Subsurface As occurrence and depth of contamination in Bangladesh. Journal of Environmental Chemistry, 7, 783–792.Google Scholar
  22. Kumar, M., Kumari, K., Ramanathan, A. L., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two agriculture dominated districts of Punjab, India. Environmental Geology, 53, 553–574. doi: 10.1007/s00254-007-0672-3.CrossRefGoogle Scholar
  23. Kumar, M., Kumari, K., Singh, U. K., Ramanathan, A. L., & Saxena, R. (2009a). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environmental Geology, 53, 553–574. doi: 10.1007/s00254-007-0672-3.CrossRefGoogle Scholar
  24. Kumar, M., Ramanathan, A. L., & Keshari, A. K. (2009b). Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques. Hydrological Processes, 23, 297–310.CrossRefGoogle Scholar
  25. Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039. doi: 10.1007/s00254-006-0275-4.CrossRefGoogle Scholar
  26. Kumar, M., Sharma, B., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2009c). Nutrient chemistry and salinity mapping of the Delhi aquifer, India: Source identification perspective. Environmental Geology, 56, 1171–1181. doi: 10.1007/s00254-008-1217-0.CrossRefGoogle Scholar
  27. Matthess, G. (1982). The properties of groundwater (p. 498). New York: Wiley.Google Scholar
  28. Mazumder, D. N. G., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakraborty, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871–877. doi: 10.1093/ije/27.5.871.CrossRefGoogle Scholar
  29. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., & Ravenscroft, P. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water; the example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293. doi: 10.1016/j.apgeochem.2004.02.001.CrossRefGoogle Scholar
  30. McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117. doi: 10.1029/2000WR900270.CrossRefGoogle Scholar
  31. Meliker, J. R., Slotnick, M. J., Avruskin, G. A., Haack, S. K., & Nriagu, J. O. (2008). Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater. Environmental Geochemistry and Health,. doi: 10.1007/s10653-008-9173-x.
  32. Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338. doi: 10.1038/26387.CrossRefGoogle Scholar
  33. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413. doi: 10.1016/S0883-2927(99)00086-4.CrossRefGoogle Scholar
  34. Nickson, R., Sengupta, C., Mitra, P., Dave, S. N., Banerjee, A. K., Bhattacharya, A., et al. (2007). Current knowledge on the distribution of arsenic in groundwater in five states of India. Journal of Environmental Science and Health Part A, 42, 1707–1718. doi: 10.1080/10934520701564194.CrossRefGoogle Scholar
  35. Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal basin, Bangladesh: Distribution, field relations, and hydrological setting. Hydrogeology Journal, 13, 727–751. doi: 10.1007/s10040-003-0314-0.CrossRefGoogle Scholar
  36. Saha, K. C. (1984). Melanokeratosis from arsenic contaminated tubewell water. Indian Journal of Dermatology, 29, 37–46.Google Scholar
  37. Saha, L. C., & Kumar, S. (2006). Comparative quality of potable waters at Bhagalpur, India. Acta Hydrochimica et Hydrobiologica, 18(4), 459–467. doi: 10.1002/aheh.19900180410.CrossRefGoogle Scholar
  38. Shah, B. A. (2008). Role of quaternary stratigraphy on arsenic-contaminated groundwater from parts of middle Ganga Plain, UP–Bihar, India. Environmental Geology, 35, 1553–1561. doi: 10.1007/s00254-007-0766-y.CrossRefGoogle Scholar
  39. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi: 10.1016/S0883-2927(02)00018-5.CrossRefGoogle Scholar
  40. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 83, 177–186.Google Scholar
  41. Todd, D. K. (1959). Ground water hydrology. Singapore: Wiley.Google Scholar
  42. WHO. (1993). Guidelines for drinking water quality. Recommendation edn, vol. 1–2. World Health Organization Geneva.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pankaj Kumar
    • 1
    • 2
  • Manish Kumar
    • 3
    Email author
  • A. L. Ramanathan
    • 1
  • Maki Tsujimura
    • 2
  1. 1.School of Environmental SciencesJNUNew DelhiIndia
  2. 2.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Department of Urban Engineering, School of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations