Advertisement

Environmental Geochemistry and Health

, Volume 32, Issue 1, pp 59–72 | Cite as

Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China

  • Min Gong
  • Li Wu
  • Xiang-yang BiEmail author
  • Li-min Ren
  • Lei Wang
  • Zhen-dong Ma
  • Zheng-yu Bao
  • Zhong-gen Li
Original Paper

Abstract

Nine potentially harmful heavy metals (Cd, Co, Cr, Cu, Hg, Mn, Pb, Ni, and Zn) were measured in 477 topsoil samples collected from urban–rural areas in the city of Wuhan in order to identify their concentrations and possible sources, and characterize their spatial variability for risk assessment. Results showed that in most rural areas heavy-metal concentrations in soil were similar to their natural background values, but Cd, Cu, Hg, Pb, and Zn concentrations were relatively higher in densely populated districts and around industrial facilities. Multivariate analyses (correlation matrix, principal component analysis, and cluster analysis) indicated that Cd, Cu, Hg, Pb, and Zn were mainly derived from anthropogenic inputs, and Co, Cr, and Mn were controlled by natural source, whereas Ni appeared to be affected by both anthropogenic and natural sources. The result of risk assessment indicated that nearly 48% of the study area suffered from moderate to severe contamination.

Keywords

Topsoil Heavy metals Contamination GIS Multivariate statistics Wuhan 

Notes

Acknowledgments

This research was supported by the Geological Survey of China and Hubei Province Program “Multipurpose Geochemical Survey of Hubei Province” (200214200024) and Natural Science Foundation of China (40703023 and 40703020). The authors are greatly indebted to colleagues who participated in the fieldwork and data processing.

References

  1. Agricultural Chemistry Committee of China. (1983). Conventional methods of soil and agricultural chemistry analysis (pp. 70–165). Beijing: Science Press (in chinese).Google Scholar
  2. Angelone, M., Corrado, T., & Dowgiallo, G. (1995). Lead and cadmium distribution in urban soil and plants in the city of Rome: A preliminary study. In Proceedings of the third international conference on the biogeochemistry of trace elements (pp. 23–24).Google Scholar
  3. Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248. doi: 10.1023/A:1026554308673.CrossRefGoogle Scholar
  4. Bityukova, L., Shogenova, A., & Birke, M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environmental Geochemistry and Health, 22, 173–193. doi: 10.1023/A:1006754326260.CrossRefGoogle Scholar
  5. Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb, and Zn in topsoils of Osnabrück in relation to land use. The Science of the Total Environment, 166, 137–148. doi: 10.1016/0048-9697(95)04520-B.CrossRefGoogle Scholar
  6. Brümelis, G., Lapina, L., Nikodemus, O., & Tabors, G. (2002). Use of the O horizon of forest soils in monitoring metal deposition in latvia. Water, Air, and Soil Pollution, 135, 291–309. doi: 10.1023/A:1014714111050.CrossRefGoogle Scholar
  7. Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in USA. Journal of Environmental Quality, 32, 2109–2121.Google Scholar
  8. Chen, T., Liu, X., Zhu, M. Z., et al. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–78. doi: 10.1016/534j.envpol.2007.03.004.CrossRefGoogle Scholar
  9. Chen, Q. F., Shan, B. Q., Yin, C. Q., & Hu, C. X. (2007). Two alternative modes for diffuse pollution control in Wuhan city zoo. Journal of Environmental Sciences (China), 19, 1067–1073. doi: 10.1016/S1001-0742(07)60174-0.Google Scholar
  10. Chen, T. B., Zheng, Y. M., Lei, M., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60, 542–551. doi: 10.1016/j.chemosphere.2004.12.072.CrossRefGoogle Scholar
  11. Chirenje, T., Ma, L. Q., Reeves, M., & Szulczewski, M. (2003). Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 119, 113–120. doi: 10.1016/S0016-7061(03)00244-1.CrossRefGoogle Scholar
  12. Cui, Y., Zhu, Y.-G., Zhai, R., Huang, Y., Qiu, Y., & Liang, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31, 784–790. doi: 10.1016/j.envint.2005.05.025.CrossRefGoogle Scholar
  13. Culbard, E. B., Thornton, I., Watt, J., Wheatley, M., Moorcroft, S., & Thompson, M. (1988). Metal contamination in British urban dusts and soils. Journal of Environmental Quality, 17, 226–234.CrossRefGoogle Scholar
  14. Davies, B. E., & White, H. M. (1981). Trace element in vegetables grown on soils contaminated by base metal mining. Journal of Plant Nutrition, 3, 387–396. doi: 10.1080/01904168109362846.CrossRefGoogle Scholar
  15. De Miguel, E., Martin-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). The Science of the Total Environment, 215, 113–122. doi: 10.1016/S0048-9697(98)00112-0.CrossRefGoogle Scholar
  16. De Temmerman, L., Vanongeval, L., Boon, W., & Hoenig, M. (2003). Heavy metal content of arable soil in northern Belgium. Water, Air, and Soil Pollution, 148, 61–76. doi: 10.1023/A:1025498629671.CrossRefGoogle Scholar
  17. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS based approach to identify heavy metal sources in soil. Environmental Pollution, 114, 313–324. doi: 10.1016/S0269-7491(00)00243-8.CrossRefGoogle Scholar
  18. Folinsbee, L. J. (1993). Human health effects of air pollution. Environmental Health Perspectives, 100, 45–46. doi: 10.2307/3431520.CrossRefGoogle Scholar
  19. Gallego, J. L. R., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596. doi: 10.1016/S0160-4120(01)00115-5.CrossRefGoogle Scholar
  20. Healy, M. A., Harrison, P. G., Aslam, M., Davis, S. S., & Wilson, C. G. (1982). Lead sulphide and traditional preparations: Routes for ingestion, solubility and reactions in gastric fluid. Journal of Clinical and Hospital Pharmacy, 7, 169–173.Google Scholar
  21. Hooker, P. J., & Nathanail, C. P. (2006). Risk-based characterisation of lead in urban soils. Chemical Geology, 226, 340–351. doi: 10.1016/j.chemgeo.2005.09.028.CrossRefGoogle Scholar
  22. Huang, S. S., Liao, Q. L., Hua, M., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu province. China Chemosphere, 67, 2148–2155.Google Scholar
  23. Kuo, T.-H., Chang, C.-F., Urba, A., & Kvietkus, K. (2006). Atmospheric gaseous mercury in northern Taiwan. The Science of the Total Environment, 368, 10–18. doi: 10.1016/j.scitotenv.2005.10.017.CrossRefGoogle Scholar
  24. Lee, C. S., Li, X. D., Shi, W. Z., et al. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. The Science of the Total Environment, 356, 45–61. doi: 10.1016/j.scitotenv.2005.03.024.CrossRefGoogle Scholar
  25. Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368. doi: 10.1016/S0883-2927(01)00045-2.CrossRefGoogle Scholar
  26. Li, J., Xie, Z. M., Xu, J. M., Ye, L. J., & Liu, X. M. (2003). Evaluation on environmental quality of heavy metals in vegetable plantation soils in the suburb of Hangzhou. Ecology & Environment, 12(3), 277–280 (in chinese).Google Scholar
  27. Liu, H. L., Li, L. Q., Yin, C. Q., & Shan, B. Q. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui lake. Journal of Environmental Sciences (China), 20, 390–397. doi: 10.1016/S1001-0742(08)62069-0.Google Scholar
  28. Madrid, L., Diaz-Barrientos, E., Reinoso, R., & Madrid, F. (2004). Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. European Journal of Soil Science, 55(2), 209. doi: 10.1046/j.1365-2389.2004.00589.x.CrossRefGoogle Scholar
  29. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243. doi: 10.1016/S0048-9697(02)00273-5.CrossRefGoogle Scholar
  30. Mesilio, L., Farago, M. E., & Thornton, I. (2003). Reconnaissance soil geochemical survey of Gibraltar. Environmental Geochemistry and Health, 25, 1–8. doi: 10.1023/A:1021232412519.CrossRefGoogle Scholar
  31. Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European mediterranean area by multivariate analysis. Chemosphere, 65, 863–872. doi: 10.1016/j.chemosphere.2006.03.016.CrossRefGoogle Scholar
  32. Mielke, H. W., Blake, B., Burroughs, S., & Hassinger, N. (1984). Urban lead levels in Minneapolis: The case of the Hmong children. Environment Research, 34, 64–76. doi: 10.1016/0013-9351(84)90076-8.CrossRefGoogle Scholar
  33. Ministry of Health of China. (2005). Maximum levels of contaminants in food, GB 2762-2005.Google Scholar
  34. Nakagawa, R., & Hiromoto, M. (1997). Geographical distribution and background levels of total mercury in air in Japan and neighbouring countries. Chemosphere, 34, 801–806. doi: 10.1016/S0045-6535(97)00008-8.CrossRefGoogle Scholar
  35. Nan, Z., Zhao, C., Jijun, L., Chen, F., & Sun, W. (2002). Relation between soil properties and selected heavy metal concentration in spring wheat (Triticum aestivum L.) grown in contaminated soil. Water, Air, and Soil Pollution, 133, 205–213. doi: 10.1023/A:1012962604095.CrossRefGoogle Scholar
  36. Odewande, A. A., & Abimbola, A. F. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health, 30, 243–254. doi: 10.1007/s10653-007-9112-2.CrossRefGoogle Scholar
  37. Paterson, E., Sanka, M., & Clark, L. (1996). Urban soils as pollutant sinks—a case study from Aberdeen, Scotland. Applied Geochemistry, 11(1–2), 129–131. doi: 10.1016/0883-2927(95)00081-X.CrossRefGoogle Scholar
  38. Pfeiffer, E. M., Freytag, J., Scharpenseel, H. W., Miehlich, G., & Vicente, V. (1988). Trace elements and heavy metals in soils and plants of the southeast Asian metropolis metro manila and of rice cultivation provinces in Luzon, Philippines. Hamburger Bodenkundliche Arbeiten, 11, 264.Google Scholar
  39. Raghunath, R., Tripathi, R. M., Kumar, A. V., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. V. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6 to 10-year-old children in Mumbai. Environmental Research, 80, 215–221. doi: 10.1006/enrs.1998.3919.CrossRefGoogle Scholar
  40. Sánchez-Camazano, M., Sa′nchez-Mart′ın, M. J., & Lorenzo, L. F. (1994). Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). The Science of the Total Environment, 146–147, 163–168.CrossRefGoogle Scholar
  41. State Development Center for Green-Food of China. (2000). Environmental technical terms for green food production area (NY/T391-2000).Google Scholar
  42. Takeda, A., Kimura, K., & Yamasaki, S. I. (2003). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307. doi: 10.1016/j.geoderma.2003.08.006.CrossRefGoogle Scholar
  43. Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the urban environment (pp. 47–75). London: Blackwell.CrossRefGoogle Scholar
  44. USEPA. (1994). Guidance manual for the integrated exposure uptake biokinetic model for lead in children (IEUBK). Prepared by the technical review workgroup for lead for the office of emergency an remedial response, USEPA. Publication number 9285.7-15-1 EPA 540-R-93-081 PB93-963510, with document production assistance from Envir. Criteria and Assessment Office, USEPA, Research Triangle Park.Google Scholar
  45. Wang, W. T., Ma, Z. D., Zhao, B., & Gong, M. (2005). The concentration and distribution characteristics of mercury in Gedian area, Wuhan. Environmental Chemistry, 24(4), 454–458 (in chinese).Google Scholar
  46. Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Environment, 304, 209–214. doi: 10.1016/S0048-9697(02)00569-7.CrossRefGoogle Scholar
  47. Wang, Y., Thornton, I., & Farago, M. (1997). Changes in lead concentrations in the home environment in Birmingham, England over the period 1984–1996. The Science of the Total Environment, 207, 149–156. doi: 10.1016/S0048-9697(97)00264-7.CrossRefGoogle Scholar
  48. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (pp. 37–103). Chichester: Wiley.Google Scholar
  49. Wei, F. S., Chen, J. S., Wu, Y. Y., et al. (1990). Chinese soil element background values (pp. 330–395). Beijing: China Environmental Science Press (in chinese).Google Scholar
  50. Xintaras, C. (1992). Analysis paper: Impact of lead contaminated soil on public health. US Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta.Google Scholar
  51. Xiong, Z. (1998). Heavy metal contamination of urban soils and plants in relation to traffic in Wuhan city, China. Toxicological and Environmental Chemistry, 65, 31–39. doi: 10.1080/02772249809358555.CrossRefGoogle Scholar
  52. Xue, Y., Shen, Z. G., & Zhou, D. M. (2005). Difference in heavy metal uptake between various vegetables and its mechanism. Soils, 37, 32–36 (in chinese).Google Scholar
  53. Yang, B. R., & Dong, G. X. (2004). The preliminary research about the mercury pollution in soil of Wuhan and its causes. Resources Environment & Engineering, 18(3), 54–59 (in chinese).Google Scholar
  54. Yay, O. D., Alagha, O., & Tuncel, G. (2008). Multivariate statistics to investigate metal contamination in surface soil. Journal of Environmental Management, 86, 581–594. doi: 10.1016/j. jenvman.2006.12.032.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Min Gong
    • 1
  • Li Wu
    • 2
  • Xiang-yang Bi
    • 3
    Email author
  • Li-min Ren
    • 3
  • Lei Wang
    • 4
  • Zhen-dong Ma
    • 1
  • Zheng-yu Bao
    • 3
  • Zhong-gen Li
    • 5
  1. 1.Faculty of Earth ScienceChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.School of Environmental StudiesChina University of GeosciencesWuhanPeople’s Republic of China
  3. 3.Key Laboratory of Biogeology and Environmental Geology, Ministry of EducationFaculty of Earth Science, China University of GeosciencesWuhanPeople’s Republic of China
  4. 4.Faculty of Earth ResourcesChina University of GeosciencesWuhanPeople’s Republic of China
  5. 5.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangPeople’s Republic of China

Personalised recommendations