Advertisement

Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania

  • Graham Bird
  • Mark G. Macklin
  • Paul A. Brewer
  • Sorin Zaharia
  • Dan Balteanu
  • Basarab Driga
  • Mihaela Serban
Original Paper

Abstract

Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramureş and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapuş catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapuş catchment on either side of the main river channel was identified in which peak Cd (31 μg l−1), Cu (50 μg l−1), Pb (50 μg l−1) and Zn (3,000 μg l−1) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving ‘good’ status for groundwater in this part of the Danube River Basin District (RBD).

Keywords

Groundwater Heavy metals Mining Northwestern Romania 

Notes

Acknowledgements

Funding for this project was provided by a Royal Society Joint Project Grant to MGM and PAB and an Aberystwyth University postgraduate studentship to GB. The authors would like to thank Miss Joanne Woolley and Mr Danuţ Calin for their assistance in collecting the groundwater samples.

References

  1. Aykol, A., Budakoglu, M., Kumral, M., Gultekin, A. H., Turhan, M., Esenli, V., et al. (2003). Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine, NW Anatolia, Turkey. Environmental Geology, 45, 198–208. doi: 10.1007/s00254-003-0866-2.CrossRefGoogle Scholar
  2. Backman, B., Bodis, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1997). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36, 55–64. doi: 10.1007/s002540050320.CrossRefGoogle Scholar
  3. Bencini, A., Ercolanelli, R., Sbaragli, A., & Verrucchi, C. (1993). Groundwaters of Florence (Italy)––trace element distribution and vulnerability of the aquifers. Environmental Geology, 22, 193–200. doi: 10.1007/BF00767403.CrossRefGoogle Scholar
  4. Benjamin, M. M., Hayes, K. J., & Leckie, J. O. (1982). Removal of toxic metals from power-generation waste streams by adsorption and co-precipitation. Journal of Water Pollution, 54, 1472–1481.Google Scholar
  5. Bird, S.C. (1987). The effect of hydrological factors on trace metal contamination in River Tawe, South Wales. Environmental Pollution, 45, 87–124. doi: 10.1016/0269-7491(87)90051-0.CrossRefGoogle Scholar
  6. Bird, G., Brewer, P.A., Macklin, M.G., Balteanu, D., Driga, B., Serban, M., & Zaharia, S.(2003a). The impact and significance of metal mining activities on the environmental quality of Romanian river systems. In CCMESI (Ed.), Proceedings of the First International Conference on Environmental Research and Assessment, Bucharest, Romania (pp. 316–332). University of Bucharest.Google Scholar
  7. Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., et al. (2003b). The solid-state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. doi: 10.1016/S0883-2927(03)00078-7.CrossRefGoogle Scholar
  8. Blake, W.H., Walsh, R.P.D., Barnsley, M.J., Palmer, G., Dyrynda, P., & James, J.G. (2003). Heavy metal concentrations during storm events in a rehabilitated industrialized catchment. Hydrological Processes, 17, 1923–1939. doi: 10.1002/hyp.1218.CrossRefGoogle Scholar
  9. Brewer, P.A., Macklin, M.G., Balteanu, D., Coulthard, T.J., Driga, B., Howard, A.J., & Zaharia, S.(2002). Sediment and water quality in Maramures County, northwest Romania, following the January and March 2000 tailings dam failures. In Proceedings of the Romanian Academy, series B: chemistry, life sciences and geosciences, 4, (pp. 41–48).Google Scholar
  10. CEC. (2000). Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 1–72.Google Scholar
  11. Cook, N.J. (1995). Polymetallic massive sulphide deposits at Baia Borsa, Romania. In J. Pašava, B. Kríbek, & K. Žák, (Eds.), Proceedings of the Third Biennial SGA Meeting, Prague, Czech Republic (pp. 851–854). A. A. Balkema: Rotterdam.Google Scholar
  12. Cook, N. J. (1997). Bismuth and bismuth-antimony sulphosalts from Neogene vein mineralisation, Baia Borsa area, Maramures, Romania. Mineralogical Magazine, 61, 387–409. doi: 10.1180/minmag.1997.061.406.06.CrossRefGoogle Scholar
  13. Cook, N. J. (1998). Bismuth sulphosalts from hydrothermal vein deposits of Neogene age, N. W. Romania. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 143, 19–39.Google Scholar
  14. Cook, N.J., & Chiaradia, M. (1997). Sources of base metal mineralisation in the Baia Borsa orefield, N. W. Romania: constraints from lead isotopes. In H. Papunen (Ed.), Proceedings of the Fourth Biennial SGA meeting, Turku, Finland (pp. 813–816). A. A. Balkema: Rotterdam.Google Scholar
  15. Coynel, A., Schafer, J., Dabrin, A., Rirardot, N., & Blanc, G. (2007). Groundwater contributions to metal transport in a small river affected by mining and smelting waste. Water Research, 41, 3420–3428. doi: 10.1016/j.watres.2007.04.019.CrossRefGoogle Scholar
  16. Donisa, C., Mocanu, R., Steinnes, E., & Vasu, A. (2000). Heavy metal pollution by atmospheric transport in natural soils from the northern part of eastern Carpathians. Water, Air, and Soil pollution, 120, 347–358. doi: 10.1023/A:1005255718970.CrossRefGoogle Scholar
  17. Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., p. 436). Upper Saddle River: Prentice Hall.Google Scholar
  18. El Khalil, H., El Hamiani, O., Bitton, G., Ouazzani, N., & Boularbah, A. (2008). Heavy metal contamination from mining sites in south Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environmental Monitoring and Assessment, 136, 147–160. doi: 10.1007/s10661-007-9671-9.CrossRefGoogle Scholar
  19. Faure, G. (1995). Principles and applications of Geochemistry (2nd ed., p. 600). New York: Prentice Hall.Google Scholar
  20. Ford, M., & Tellam, J. H. (1994). Source, type and extent of inorganic contamination within the Birmingham urban aquifer system. UK Journal of Hydrology, 156, 101–135. doi: 10.1016/0022-1694(94)90074-4.CrossRefGoogle Scholar
  21. Förstner, U., & Whittmann, G. T. W. (1981). Metal pollution in the aquatic environment (2nd ed., p. 486). Berlin Heidelberg: Springer-Verlag.Google Scholar
  22. Garells, R. M., & Christ, C. L. (1965). Solutions, minerals and equilibria (p. 450). New York: Harper and Row.Google Scholar
  23. Gulec, N., Gunal, B., & Erler, A. (2001). Assessment of soil and water contamination around an ash-disposal site: a case study from the Seyitomer coal-fired power plant in western Turkey. Environmental Geology, 40, 331–344. doi: 10.1007/s002540000228.CrossRefGoogle Scholar
  24. Hamilton, E.I. (1980). Analysis for trace elements. Sample treatment and laboratory quality control. In B. E. Davies (Ed.), Applied soil trace elements (pp. 21–48). Chichester: Wiley.Google Scholar
  25. Hem, J.D. (1972). Chemistry and occurrence of cadmium and zinc in surface water and groundwater. Water Resources Research, 8, 661–679. doi: 10.1029/WR008i003p00661.CrossRefGoogle Scholar
  26. Herbert, R.B.J. (1994). Metal transport in groundwater contaminated by acid mine drainage. Nordic Hydrology, 25, 193–212.Google Scholar
  27. Herbert, R.B.J. (1996). Metal retention by iron oxide precipitation from acidic ground water in Dalarna, Sweden. Applied Geochemistry, 11, 229–235. doi: 10.1016/0883-2927(95)00070-4.CrossRefGoogle Scholar
  28. Islam, R., Salminen, R., & Lahermo, P. W. (2000). Arsenic and other toxic elemental contamination of groundwater, surface water and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22, 33–53. doi: 10.1023/A:1006787405626.CrossRefGoogle Scholar
  29. Kay, D., McDonald, A., Stapleton, C., Wyer, M., & Fewtrell, L. (2006). Europe: a challenging new framework for water quality. Civil Engineering (New York, N.Y.), 159, 58–64.Google Scholar
  30. Kay, D., Wyer, M., Crowther, J., Stapleton, C., Bradford, M., McDonald, A., et al. (2005). Predicting faecal indicator fluxes using digital land use data in the UK’s sentinel water framework directive catchment: the Ribble study. Water Research, 39, 3967–3981. doi: 10.1016/j.watres.2005.07.006.CrossRefGoogle Scholar
  31. Lacatusu, R., Rauta, C., Carstea, S., & Ghelase, I. (1996). Soil-man-plant relationships in heavy metal polluted areas in Romania. Applied Geochemistry, 11, 105–107. doi: 10.1016/0883-2927(95)00101-8.CrossRefGoogle Scholar
  32. Lang, B. (1979). The base-metals-gold hydrothermal ore deposits of Baia Mare, Romania. Economic Geology and the Bulletin of the Society of Economic Geologists, 74, 1336–1351.Google Scholar
  33. Lang, B., Edelstein, O., Steinitz, G., Kovacs, M., & Halga, S. (1994). Ar-Ar dating of Adularia––a tool in understanding genetic relations between volcanism and mineralisation: Baia Mare area (Gutii Mountains) northwestern Romania. Economic Geology and the Bulletin of the Society of Economic Geologists, 89, 174–180.Google Scholar
  34. Langmuir, D. (1997). Aqueous environmental chemistry (p. 600). Saddle River: Prentice Hall.Google Scholar
  35. Lee, J.Y., Choi, J.C., Yi, M.J., Kim, J.W., Cheon, J.Y., Choi, Y.K., et al. (2005). Potential groundwater contamination with toxic metals in and around an abandoned Zn mine, Korea. Water, Air, and Soil pollution, 165, 167–185. doi: 10.1007/s11270-005-4637-4.CrossRefGoogle Scholar
  36. Longe, E.O., & Enekwechi, L.O. (2007). Investigation on potential groundwater impacts and influence of local hydrogeology on natural attenuation of leachate at a municipal landfill International. Journal of Environmental Science and Technology, 4, 133–144.Google Scholar
  37. Loukola-Ruskeeniemi, K., Kantola, M., Halonen, T., Seppanen, K., Henttonen, P., Kallio, E., et al. (2003). Mercury-bearing black shales and human Hg intake in eastern Finland: impact and mechanisms. Environmental Geology, 43, 283–297.Google Scholar
  38. Loukola-Ruskeeniemi, K., Uutela, A., Tenhola, M., & Paukola, T. (1998). Environmental impact of metalliferous black shales at Talvivaara in Finland, with indication of lake acidification 9000 years ago. Journal of Geochemical Exploration, 64, 395–407. doi: 10.1016/S0375-6742(98)00047-8.CrossRefGoogle Scholar
  39. Macklin, M.G., Brewer, P.A., Balteanu, D., Coulthard, T.J., Driga, B., Howard, A.J., et al. (2003). The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures county, upper Tisa Basin, Romania. Applied Geochemistry, 18, 241–257. doi: 10.1016/S0883-2927(02)00123-3.CrossRefGoogle Scholar
  40. Macklin, M.G., & Klimek, K. (1992). Dispersal, storage and transformation of metal contaminated alluvium in the upper Vistula basin, southwest Poland. Applied Geography (Sevenoaks, England), 12, 7–30. doi: 10.1016/0143-6228(92)90023-G.CrossRefGoogle Scholar
  41. Mann, A.W., & Deutscher, R.L. (1977). Solution geochemistry of copper in water containing carbonate, sulphate and chloride ions. Chemical Geology, 19, 253–265. doi: 10.1016/0009-2541(77)90018-3.CrossRefGoogle Scholar
  42. Mann, A.W., & Deutscher, R.L. (1980). Solution geochemistry of lead and zinc in water containing carbonate, sulphate and chloride ions. Chemical Geology, 29, 293–311. doi: 10.1016/0009-2541(80)90026-1.CrossRefGoogle Scholar
  43. Mok, W.M., Riley, J.A., & Wai, C.M. (1988). Arsenic speciation and quality of groundwater in a lead-zinc mine. Water Research, 22, 769–774. doi: 10.1016/0043-1354(88)90189-3.CrossRefGoogle Scholar
  44. Moore, J.W., & Ramamoorthy, S. (1984). Heavy metals in natural waters: applied monitoring and impact assessment (p. 268). New York: Springer Verlag.Google Scholar
  45. Palheiros, I.B., Duarte, A.C., Oliveira, J.P. & Hall, A. (1989). The influence of pH, ionic strength and chloride concentration on the adsorption of cadmium by a sediment. Water Science and Technology, 21, 1873–1876.Google Scholar
  46. Piispanen, R., & Nykyri, T. (1997). Acidification of groundwater in water-filled gravel pits––a new environmental and geomedical threat. Environmental Geochemistry and Health, 19, 111–126. doi: 10.1023/A:1018454622669.CrossRefGoogle Scholar
  47. Ramsey, M.H., Thompson, M., & Banerjee, E.K. (1987). Realistic assessment of analytical data quality from inductively coupled plasma atomic emission spectrometry. Analytical Proceedings, 24, 260–265. doi: 10.1039/ap9872400260.Google Scholar
  48. Reimann, C., & de Caritat, P. (1998). Chemical elements in the environment: fact sheets for the geochemist and environmental scientist (p. 398). Berlin: Springer-Verlag.Google Scholar
  49. Rösner, U. (1998). Effects of historical mining activities on surface water and groundwater––an example from northwest Arizona. Environmental Geology, 33, 224–230. doi: 10.1007/s002540050241.CrossRefGoogle Scholar
  50. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle (p. 349). Berlin: Springer-Verlag.Google Scholar
  51. Schwartz, M. O., & Kgomanyane, J. (2008). Modelling natural attenuation of heavy-metal groundwater contamination in the Selebi-Phikwe mining area, Botswana. Environmental Geology, 54, 819–830. doi: 10.1007/s00254-007-0865-9.CrossRefGoogle Scholar
  52. Schwartz, F.W., & Zhang, H. (2003). Fundamentals of groundwater (p. 583). New York: Wiley.Google Scholar
  53. Sharma, R. S., & Al-Busaidi, T. S. (2001). Groundwater pollution due to a tailings dam. Engineering Geology, 60, 235–244. doi: 10.1016/S0013-7952(00)00104-6.CrossRefGoogle Scholar
  54. Shaw, G., & Wheeler, D. (1994). Statistical techniques in geographical analysis, (2nd edn.) (p. 259). London: David Fulton Publishers.Google Scholar
  55. Simsek, C., Elci, A., Gunduz, O., & Erdogan, B. (2008). Hydrogeological and hydrogeochemical characterization of a karstic mountain region. Environmental Geology, 54, 291–308. doi: 10.1007/s00254-007-0817-4.CrossRefGoogle Scholar
  56. Smedley, P.L., Edmunds, W.M., & Pelig-Ba, K.B.(1996). Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. In Appleton, J.D., Fuge, R. & McCall, J.H. (Eds.), Environmental geochemistry and health (Geology Society special publication No. 113).Google Scholar
  57. Stamatis, G., Voudouris, K., & Karefilakis, F. (2001). Groundwater pollution by heavy metals in historical mining area of Lavrio, Attica, Greece. Water, Air, and Soil pollution, 128, 61–83.CrossRefGoogle Scholar
  58. Turekian, K.K., & Wedepohl, K.H. (1961). Distribution of the elements in some major units of the Earth’s crust. Bulletin of the Geological Society of America, 72, 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.CrossRefGoogle Scholar
  59. White, I., & Howe, J. (2003). Planning and the European Union Water Framework Directive. Journal of Environmental Planning and Management, 46, 621–632. doi: 10.1080/0964056032000133198.CrossRefGoogle Scholar
  60. Woo, N.C., Choi, M.J., & Lee, K.S. (2002). Assessment of groundwater quality and contamination from uranium-bearing black shale in Goesan-Boeun areas, Korea. Environmental Geochemistry and Health, 24, 261–273. doi: 10.1023/A:1016010626263.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Graham Bird
    • 1
  • Mark G. Macklin
    • 1
  • Paul A. Brewer
    • 1
  • Sorin Zaharia
    • 2
  • Dan Balteanu
    • 3
  • Basarab Driga
    • 3
  • Mihaela Serban
    • 3
  1. 1.Centre for Catchment and Coastal Research and River Basin Dynamics and Hydrology Research Group, Institute of Geography and Earth SciencesAberystwyth UniversityCeredigionUK
  2. 2.ARIS Design InstituteBaia MareRomania
  3. 3.Institute of GeographyThe Romanian AcademyBucharestRomania

Personalised recommendations