Environmental Geochemistry and Health

, Volume 31, Issue 5, pp 537–548

Soil factors associated with zinc deficiency in crops and humans

Review Paper

Abstract

Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.

Keywords

Zinc deficiency Crops Human health Soils Soil conditions Fertilizers Biofortification 

References

  1. Ahsan, E., & Beuter, T. (2000). Technical note: Changes in crop production scenario. Bangladesh: Resal.Google Scholar
  2. Alloway, B. J. (2008a). Micronutrients and crop production. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 1–40). Dordrecht: Springer.CrossRefGoogle Scholar
  3. Alloway, B. J. (2008b). Zinc in soils and crop nutrition (2nd ed.). Brussels: International Zinc Association; Paris: International Fertilizer Industry Association.Google Scholar
  4. Baize, D. (2000). France. European Soil Working Group, heavy metal (trace element) and organic matter contents of European soils: Results of preliminary evaluations for 4 member states. Ispra, Italy: European Commission, JRC.Google Scholar
  5. Barak, P., & Helmke, P. A. (1993). The chemistry of zinc. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 90–106). Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Brennan, R. F., Armour, J. D., & Reuter, D. J. (1993). Diagnosis of zinc deficiency. In A. D. Robson (Ed.), Zinc in soils and plants. Dordrecht: Kluwer Academic Publishers.Google Scholar
  7. Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc in plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 90–106). Dordrecht: Kluwer Academic Publishers.Google Scholar
  8. Cakmak, I. (2000). Role of zinc in protecting plant cells from reactive oxygen species. New Phytol, 146, 185–205.CrossRefGoogle Scholar
  9. Cakmak, I. (2008). Zinc deficiency in wheat in Turkey. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 181–200). Dordrecht: Springer.CrossRefGoogle Scholar
  10. Cakmak, I., Kalayci, M., Ekiz, H., Braun, H. J., & Yilmaz, A. (1999). Zinc deficiency as an actual problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Res, 60, 175–188.CrossRefGoogle Scholar
  11. Deckers, J. A., Nachtergaele, F. O., & Spaargaren, O. C. (Eds.). (1998). World reference base for soil resources: Introduction (pp. 81–84). Leuven: Acco Publishers.Google Scholar
  12. Dobermann, A., & Fairhurst, T. (2000). Rice: Nutrient disorders and nutrient management. Los Baños, Philippines: Potash and Phosphate Institute, Potash and Phosphate Institute of Canada, & International Rice Research Institute.Google Scholar
  13. Eyupoglu, F., Kurucu, N., & Sanisa, U. (1994). Status of plant available micronutrients in Turkish soils (in Turkish). Annual report, report no. R-118. Soil and Fertilizer Research Institute, Ankara, pp. 25–32.Google Scholar
  14. Fageria, N. K., & Stone, L. F. (2008). Micronutrient deficiency problems in South America. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 245–266). Dordrecht: Springer.CrossRefGoogle Scholar
  15. FAO. (2000a). Calcareous soils. FAO AGL Land and Plant Nutrition Management Services. www.fao.org/ag/agl/agll/prosoil/calc.htm. Accessed 24 February 2009.
  16. FAO. (2000b). Sandy soils. FAO AGL Land and Plant Nutrition Management Services. www.fao.org/ag/agl/agll/prosoil/sandy.htm. Accessed 24 February 2009.
  17. Gao, X. P., Kuyper, T. M., Zou, C. Q., Zhang, F. S., & Hoffland, E. (2007). Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil, 290, 283–291.CrossRefGoogle Scholar
  18. Gorny, A., Utermann, J., & Eckelmann, W. (2000). Germany, European Soil Working Group, heavy metal (trace element) and organic matter contents of European soils: Results of preliminary evaluations for 4 member states. Ispra, Italy: European Commission, JRC.Google Scholar
  19. Graham, R. D. (1983). Effect of nutrient stress on susceptibility of plants to disease with particular reference to trace elements. Advances in Botanic Research, 10, 221–276.CrossRefGoogle Scholar
  20. Graham, R. D. (2008). Micronutrient deficiencies in crops and their global significance. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 41–61, 105). Dordrecht: Springer.Google Scholar
  21. Graham, R. D., Ascher, J. S., & Hynes, J. S. (1992). Selecting zinc-efficient cereal genotypes for soils low in zinc status. Plant and Soil, 146, 241–250.CrossRefGoogle Scholar
  22. Graham, R. D., & Rengel, Z. (1993). Genotypic variation in zinc uptake and utilization by plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 107–118). Dordrecht: Kluwer Academic Publishers.Google Scholar
  23. Hajiboland, R., Yang, X. E., Römheld, V., & Neuman, G. (2005). Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 54(2), 163–173.CrossRefGoogle Scholar
  24. Hamid, A., & Ahmad, N. (2001). Paper at regional workshop on Integrated Plant Nutrition System (IPNS). Development and Rural Poverty Alleviation. September 18–21, Bangkok.Google Scholar
  25. Herschfinkel, M., Silverman, W. F., & Sekler, I. (2007). The zinc sensing receptor, a link between zinc and cell signaling. Molecular Medicine, 13(7–8), 331–336. doi:10.2119/2006-00038.Hershfinkel.Google Scholar
  26. Holloway, R. E., Graham, R. D., & Stacey, S. P. (2008). Micronutrient deficiencies in Australian field crops. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 63–92). Dordrecht: Springer.Google Scholar
  27. Hotz, C., & Brown, K. H. (eds.). (2004). Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 25 (Supplement 2), S91–S204.Google Scholar
  28. Huang, C., Barker, S. J., Langridge, P., Smith, F. W., & Graham, R. D. (2000). Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-deficient and sufficient barley roots. Plant Physiology, 124, 415–422.CrossRefGoogle Scholar
  29. Jiang, W., Struik, P. C., Linga, J., van Keulen, H., Ming, Z., & Stomph, T. J. (2007). Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Annals of Applied Biology, 150, 383–391.CrossRefGoogle Scholar
  30. Johnson-Beebout, S. E., Lauren, J. G., & Duxbury, J. M. (2009). Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Communications in Soil Science and Plant Analysis, 40(11 & 12) (in press).Google Scholar
  31. Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.Google Scholar
  32. Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L., & Cakmak, I. (1999). Grain yield, zinc deficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research, 63, 87–98.CrossRefGoogle Scholar
  33. Katyal, J. C., & Vlek, P. L. G. (1985). Micronutrient problems in Tropical Asia. Fertiliser Research, 7, 69–94.CrossRefGoogle Scholar
  34. Kiekens, L. (1995). Zinc. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 284–305). London: Blackie Academic and Professional.Google Scholar
  35. Lantican, M. A., Pringali, P. L., & Rajaram, S. (2001). Are marginal wheat environments catching up? CYMMIT World Wheat Overview and Outlook, Part 2, 39–44.Google Scholar
  36. Lindsay, W. L. (1972). Zinc in soils and plant nutrition. Advances in Agronomy, 24, 147–186.CrossRefGoogle Scholar
  37. Loneragan, J. F., & Webb, M. J. (1993). Interactions between zinc and other nutrients affecting the growth of plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 119–134). Dordrecht: Kluwer Academic Publishers.Google Scholar
  38. Longhurst, R. D., Roberts, A. H. C., & Waller, J. E. (2004). Concentrations of arsenic, cadmium, copper, lead and zinc in New Zealand pastoral topsoils and herbage. New Zealand Journal of Agricultural Research, 47, 23–32.Google Scholar
  39. Malakouti, M. J. (2007). Zinc is a neglected element in the life cycle of plants. Middle Eastern & Russian Journal of Plant Science and Biotechnology, 1(1), 1–12.Google Scholar
  40. Marschner, H. (1993). Zinc uptake from soils. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 48–78). Dordrecht: Kluwer Academic Publishers.Google Scholar
  41. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.Google Scholar
  42. Martens, D. C., & Westermann, D. T. (1991). Fertilizer applications for correcting micronutrient deficiencies. In J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), Micronutrients in agriculture (2nd ed., pp. 549–592). Madison: Soil Science Society of America.Google Scholar
  43. Mortvedt, J. J., & Gilkes, R. J. (1993). Zinc fertilisers. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 33–44). Dordrecht: Kluwer Academic Publishers.Google Scholar
  44. Pal, A. R., Motiramani, D. P., Rathorf, G. S., Bansal, K. N., & Gupta, S. B. (1989). A model to predict the zinc status of soils for maize. Plant and Soil, 116, 49–55.CrossRefGoogle Scholar
  45. Rashid, A. (2006). Incidence, diagnosis and management of micronutrient deficiencies in crops: Success stories and limitations in Pakistan. IFA International Workshop on Micronutrients, 27 February, Kunming, China.Google Scholar
  46. Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A., et al. (2003). Agricultural soils in Northern Europe: A geochemical atlas. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  47. Scharpenseel, H. W., Eichwald, E., Haupenthal, Ch., & Neue, H. U. (1983). Zinc deficiency in a soil toposequence grown to rice at Tiaong, Quezon Province, Philippines. Catena, 10, 115–132.CrossRefGoogle Scholar
  48. Sillanpää, M. (1982). Micronutrients and the nutrient status of soils: A global study. FAO Soils Bulletin No. 48, FAO, Rome.Google Scholar
  49. Sillanpää, M. (1990). Micronutrient assessment at country level: An international study. FAO Soils Bulletin No. 63, FAO, Rome.Google Scholar
  50. Singh, M. V. (2008). Micronutrient deficiencies in crops and soils in India. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 93–126). Dordrecht: Springer.CrossRefGoogle Scholar
  51. Singh, B., Natesan, S. K. A., Singh, B. K., & Usha, K. (2005). Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88(1), 36–44.Google Scholar
  52. Srivastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production (p. 356). Lebanon, NH: Science Publishers.Google Scholar
  53. Tapeiro, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedical Pharmacotherapy, 57, 399–411.CrossRefGoogle Scholar
  54. Timsina, J., & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Research, 69, 93–132.CrossRefGoogle Scholar
  55. University of California. (2006). Cooperative extension project. http://agronomy.ucdavis.edu/uccerice?PRODUCT/rpic04.htm. Accessed 24 February 2009.
  56. Uygur, V., & Rimmer, D. L. (2000). Reactions of zinc with iron coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51, 511–516.CrossRefGoogle Scholar
  57. Welch, R. M. (1993). Zinc concentrations and forms in plants for humans and animals. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 183–196). Dordrecht: Kluwer Academic Publishers.Google Scholar
  58. Wissuwa, M., Ismail, A. M., & Graham, R. D. (2007). Rice grain zinc concentrations as affected by genotype, native soil-zinc, and zinc fertilization. Plant and Soil. doi: 10.1007/s11104-007-9368-458.
  59. Yang, X., Römheld, V., & Marschner, H. (1994). Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars. Plant and Soil, 164, 1–7.CrossRefGoogle Scholar
  60. Zou, C., Gao, X., Shi, R., Fan, X., & Zhang, F. (2008). Micronutrient deficiencies in crop production in China. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 127–148). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Soil Science, School of Human and Environmental SciencesUniversity of ReadingReadingUK

Personalised recommendations