Human arsenic exposure and risk assessment at the landscape level: a review

  • Nasreen Islam Khan
  • Gary Owens
  • David Bruce
  • Ravi Naidu
Original Paper


Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to the landscape. Such contamination can also directly affect human health when irrigated crops are primarily used for human consumption. Therefore, a large number of humans are potentially at risk worldwide due to daily As exposure. Numerous previous studies have been severely limited by small sample sizes which are not reliably extrapolated to large populations or landscapes. Human As exposure and risk assessment are no longer simple assessments limited to a few food samples from a small area. The focus of more recent studies has been to perform risk assessment at the landscape level involving the use of biomarkers to identify and quantify appropriate health problems and large surveys of human dietary patterns, supported by analytical testing of food, to quantify exposure. This approach generates large amounts of data from a wide variety of sources and geographic information system (GIS) techniques have been used widely to integrate the various spatial, demographic, social, field, and laboratory measured datasets. With the current worldwide shift in emphasis from qualitative to quantitative risk assessment, it is likely that future research efforts will be directed towards the integration of GIS, statistics, chemistry, and other dynamic models within a common platform to quantify human health risk at the landscape level. In this paper we review the present and likely future trends of human As exposure and GIS application in risk assessment at the landscape level.


Arsenic Exposure Landscape Risk assessment Human health GIS 


  1. Abernathy, C. O., Liu, Y.-P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. Environmental Health Perspectives, 107, 593–597.CrossRefGoogle Scholar
  2. Abernathy, C. O., Thomas, D. J., & Calderon, R. L. (2003). Health effects and risk assessment of arsenic. American Society for Nutritional Sciences, 133, 1536S–1538S.Google Scholar
  3. Adair, B. M., Hudgens, E. E., Schmitt, M. T., Calderon, R. L., & Thomas, D. J. (2006). Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water. Environmental Research, 101(2), 213–220.CrossRefGoogle Scholar
  4. Ahmad, S. A. (2007). Sociocultural aspects of arsenicosis in Bangladesh: Community perspective. Journal of Environmental Science and Health Part A, 42(12), 1945–1958.CrossRefGoogle Scholar
  5. Al-Adamat, R. A. N., Foster, I. D. L., & Baban, S. M. J. (2003). Groundwater vulnerability and risk mapping for Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, 23, 303–324.CrossRefGoogle Scholar
  6. Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 308, 83–96.CrossRefGoogle Scholar
  7. Albertson, P. E., Girstmair, G., & Otero Valle, M. N., (1993). Development and application of a groundwater model integrated in the GIS GRASS. IAHS Publication, 211, 333 pp.Google Scholar
  8. Ali, S. M. K., Edib, K., Pramanik, M. M. A., Alam, A. M. S., Rabbani, G. H., Anwar, K. S., Hossain, A., & Nasir, M. (2002). Nutritional status of patients with chronic arsenicosis in rural Bangladesh. Second International conference on Bangladesh Enviorment (ICBEN-2002), pp. 167–172.Google Scholar
  9. Al Rmalli, S. W., Haris, P. I., Harrington, C. F., & Ayub, M. (2005). A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Science of the Total Environment, 337(1–3), 23–30.CrossRefGoogle Scholar
  10. Anawar, H. M., Akai, J., Mostofa, K. M. G., Safiullah, S., & Tareq, S. M. (2002). Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Environment International, 27(7), 597–604.CrossRefGoogle Scholar
  11. Aral, M. M., & Maslia, M. L. (1996). Evaluation of human exposure to contaminated water supplies using GIS and modeling. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology and water resources management (pp. 243–252), IAHS Publication No. 235. Wallingford: IAHS Press.Google Scholar
  12. Aslibekian, O., & Moles, R. (2003). Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, CO Tipperary, Ireland. Environmental Geochemistry and Health, 25(2), 247–266.CrossRefGoogle Scholar
  13. ATSDR. (1989). Toxicological profile of arsenic. In Agency for toxic substances and disease registry (ASTDR). Atlanta: US Public Health Services.Google Scholar
  14. BADC. (2003). Survey Report on Irrigation Equipment and Irrigated Area in Boro 2003 Season, Bangladesh Agricultural Development Corporation (BADC).Google Scholar
  15. Bae, M., Wantanabe, C., Inaoka, T., Sekiyama, M., Sudo, N., Bokul, M. H., et al. (2002). Arsenic in cooked rice in Bangladesh. The LANCET, 360(9348), 1839–1840.CrossRefGoogle Scholar
  16. Barrocu, G., & Biallo, G. (1993). Application of GIS for aquifer vulnerability evaluation. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology, water resources management (pp. 571–578). Wallingford: IAHS.Google Scholar
  17. Bartels, C. J., & Van Beurden, A. U. C. J. (1998). Using geographic and cartographic principles for environmental assessment and risk mapping. Journal of Hazardous Materials, 61, 115–124.CrossRefGoogle Scholar
  18. Basu, B., & Sil, S. (2004). Arsenic mapping for North 24—Pargana District of West Bengal using GIS and Remote Sensing technology.
  19. Bien, J. D., ter Meer, J., Rulkens, W. H., & Rijnaarts, H. H. M. (2004). A GIS based approach for the long-term prediction of human health risks at contaminated sites. Environmental Modelling and Assessment, 9, 221–226.Google Scholar
  20. Bober, M. L., Wood, D., & McBridge, R. A. (1996). Use of digital analysis and GIS to assess regional soil compaction risk. PE&RS: Photogrammetric Engineering & Remote Sensing, 62, 1397.Google Scholar
  21. Buchet, J. P., Lauwerys, R., Vandevoorde, A., & Pycke, J. M. (1983). Oral daily intake of cadmium, lead, manganese, copper, chromium, mercury, calcium, zinc and arsenic in Belgium: a duplicate meal study. Food and Chemical Toxicology, 21(1), 19–24.CrossRefGoogle Scholar
  22. Caceres, D. D., Pino, P., Montesinos, N., Atalah, E., Amigo, H., & Loomis, D. (2005). Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in Chilean Population. Environmental Research, 98(2), 151–159.CrossRefGoogle Scholar
  23. Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56, 45–51.CrossRefGoogle Scholar
  24. Chen, C.-J., Hsu, L.-I., Wang, C.-H., Shih, W.-L., Hsu, Y.-H., Tseng, M.-P., et al. (2005). Biomakers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and Applied Pharmacology, 206(2), 198–206.CrossRefGoogle Scholar
  25. Chen, Z., Huang, G. H., Chakma, A. (1998). Integrated environmental risk assessment through a GIS based decision-support system. Paper presented at the ESRI International User Conference, San Diego, USA.Google Scholar
  26. Christensen, J. M. (1995). Human exposure to toxic metal: Factors influencing interpretation of biomonitoring results. The Science of the Total Environment, 166, 89–135.CrossRefGoogle Scholar
  27. CIA. (2006). World Fact Book,
  28. Dabeka, R. W., McKenzie, A. D., Lacroix, G. M., Cleroux, C., Bowe, S., Graham, R. A., et al. (1993). Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. Journal of AOAC International, 76(1), 14–25.Google Scholar
  29. Dabeka, R. W., McKenzie, A. D., & Lacroix, G. M. (1987). Dietary intakes of lead, cadmium, arsenic and fluoride by Canadian adults: A 24-hour duplicate diet study. Food Additives and Contaminants, 4(1), 89–101.Google Scholar
  30. Das, P. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentration in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30(3), 383–387.CrossRefGoogle Scholar
  31. Del Razo, L. M., Garcia-Vargas, G. G., Garcia-Salcedo, J., Sanmiguel, M. F., Rivera, M., Hernandez, M. C., et al. (2002). Arsenic levels in cooked food and assessment of adult dietray intake of arsenic in the Region Lagunera, Mexico. Food and Chemical Toxicology, 40(10), 1423–1431.CrossRefGoogle Scholar
  32. de Paz, J. M., & Ramos, C. (2002). Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas. Environmental Pollution, 118, 249–258.CrossRefGoogle Scholar
  33. Dokkum, W. V., De Vos, R. H., Muys, T. H., & Wesstra, J. A. (2007). Minerals and trace elements in total diets in the Netherlands. British Journal of Nutrition, 61(1), 7–15.CrossRefGoogle Scholar
  34. Duker, A. A. (2005). Spatial analysis of factors implicated in mycobacterium ulcerans infection in Ghana (pp. 1–155). Unpublished Ph.D. Thesis Enschede: ITC.Google Scholar
  35. Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. Journal of Environmental Science and Health, A38(1), 61–69.CrossRefGoogle Scholar
  36. Emmi, P. C., & Horton, C. A. (1996). Seismic risk assessment, accuracy requirements, and GIS based sensitivity analysis. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Johnston, D. Maidment, D. Crane, & S. Glendinning (Eds.), GIS and environmental modeling: Progress and research issues (pp. 191–195). Fort Collins: GIS World Books.Google Scholar
  37. Engel, B., Navulur, K., Cooper, B., & Hahn, L. (1996). Estimating groundwater vulnerability to nonpoint source pollution from nitrates and pesticides on a regional scale. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology, water resources management (pp. 521–526). Wallingford: IAHS.Google Scholar
  38. Fedra, K. (1993). GIS and environmental modeling. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 35–50). New York: Oxford University Press.Google Scholar
  39. Fedra, K. (1996). Distributed models and embedded GIS: Integration strategies and case studies. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 413–418). Fort Collins: GIS World.Google Scholar
  40. Forman, R. T. T., & Gordon, M. (1986). Landscape ecology. New York: Wiley.Google Scholar
  41. Foster, J. A., & McDonald, A. T. (2000). Assessing pollution risks to water supply intakes using geographical information systems (GIS). Environmental Modelling & Software, 15(3), 225–234.CrossRefGoogle Scholar
  42. Frysinger, S. P. (1996). Environmental decision support systems (EDSS): An open architecture integrating modeling and GIS. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 357–362). Fort Collins: GIS World.Google Scholar
  43. Fytianos, K., & Christophoridis, C. (2004). Nitrate, arsenic and chloride pollution of drinking water in northern Greece, elaboration by applying GIS. Environmental Monitoring and Assessment, 93(1), 55–67.CrossRefGoogle Scholar
  44. Gartrell, M. J., Craun, J. C., Podrebarac, D. S., & Gunderson, E. L. (1985). Pesticides, selected elements, and other chemicals in infant and toddler total diet samples, October 1978–September 1979. Journal of Association of Official Analytical Chemists, 66(5), 842–861.Google Scholar
  45. Gay, J. R., & Korre, A. (2006). A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 142, 227–234.CrossRefGoogle Scholar
  46. Gochfeld, M. (1998). Principles of toxicology. In R. Wallace (Ed.), Maxcy-Rosenau-Last. Public health & preventive medicine (14th ed.). Stamford: Appleton-Lange.Google Scholar
  47. Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (Eds.). (1993). Environmental modeling with GIS. New York: Oxford University Press.Google Scholar
  48. Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41(7), 1–19.CrossRefGoogle Scholar
  49. Grandjean, P., & Bach, E. (1986). Indirect exposures: The significance of bystanders at work and at home. AIHA Journal, 47(12), 819–824.CrossRefGoogle Scholar
  50. Gunderson, E. L. (1995). FDA Total Diet Study, July 1986–April 1991, dietary intakes of pesticides, selected elements, and other chemicals. Journal of AOAC International, 78(6), 1353–1363.Google Scholar
  51. Guo, H.-R., & Tseng, M.-P. (2000). Arsenic drinking water and bladder cancer: Comparison between studies based on cabcer registry and death certificates. Environmental Geochemistry and Health, 22, 83–91.CrossRefGoogle Scholar
  52. Hadi, A., & Parveen, R. (2004). Arsenicosis in Bangladesh: Prevalence and socio-economic correlates. Public Health, 118(8), 559–564.CrossRefGoogle Scholar
  53. Hargrove, W. W., Levine, D. A., Miller, M. R., Coleman, P. R., Pack, D. L., & Durfee, R. C. (2001). GIS and risk assessment: A fruitful combination. In ESRI international user conference. San Diego, USA.Google Scholar
  54. Harris, J. S. (1997). Evaluating possible human exposure pathways to populations relative to hazardous materials sites. In ESRI international user conference. San Diego, USA.Google Scholar
  55. Harrison, P. T. C., & Holmes, P. (2006). Assessing risks to human health. Issues in Environmental Science and Technology, 22(22), 65–83.CrossRefGoogle Scholar
  56. Hasnat, M. A. (2005). Assessment of arsenic mitigation options; adverse pregnancy outcomes due to chronic arsenic exposure; and the impact of nutritional status on development of arsenicosis in Bangladesh. PhD. Thesis, The National Centre from Epidemiology and Population Health. The Australian National University, Australia.Google Scholar
  57. Hassan, M. M., Atkins, P. J., & Dunn, C. E. (2003). The spatial pattern of risk from arsenic poisoning: A Bangladesh case study. Journal of Environmental Science and Health, A38(1), 1–24.CrossRefGoogle Scholar
  58. Hassan, M. M., Atkins, P. J., & Dunn, C. E. (2005). Social implications of arsenic poisoning in Bangladesh. Social Science and Medicine, 61, 2201–2211.CrossRefGoogle Scholar
  59. Heck, J. E., Gamble, M. V., Chen, Y., Graziano, J. H., Slavkovich, V., Parvez, F., et al. (2007). Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. American Journal of Clinical Nutrition, 85(5), 1367–1374.Google Scholar
  60. Hellweger, F. L., Wilson, H. L., Naranjo, E. M., & Anid, P. J. (2002). Adding human health risk analysis tools to geographic information systems. Transactions in GIS, 6(4), 471–484.CrossRefGoogle Scholar
  61. Hiscock, K. M., Lovett, A. A., & Parfitt, J. P. (1995). Groundwater vulnerability assessment: two case studies using GIS methodology. The Quarterly Journal of Engineering Geology, 28, 179–194.Google Scholar
  62. Hsu, L. T., & Cheng, C. C. (1999). Integrating landscape models in forest landscape analyses using GIS: An example in Taiwan. GIS Development, 1–5.Google Scholar
  63. Islam, L. N., Nabi, A., Rahman, M. M., Khan, M. A., & Kazi, A. I. (2004a). Association of clinical complications with nutritional status and the prevalence of leukopenia among arsenic patients in Bangladesh. International Journal of Environmental Research and Public Health, 1(2), 74–82.CrossRefGoogle Scholar
  64. Islam, M. N., & Nehaluddin, M. (2002). Hydrogeology and arsenic contamination in Bangladesh. In M. A. Feroze & M. A. Chowdhury (Eds.), Arsenic mitigation in Bangladesh. Government of the People’s Republic of Bangladesh: Local Government Division, Ministry of Rural Development & Cooperatives.Google Scholar
  65. Islam, M. R., Paul, D. K., & Shaha, R. K. (2004b). Nutritional importance of some leafy vegetables available in Bangladesh. Pakistan Journal of Biological Sciences, 7(8), 1380–1384.CrossRefGoogle Scholar
  66. Kelly, C., & Lunn, R. J. (1999). Development of a contaminated land assessment system based on hazard to surface water bodies. Water Resources Research, 33(6), 1377–1386.Google Scholar
  67. Korre, A., Durucan, S., & Koutroumani, A. (2002). Quantitative-spatial assessment of the risks associated with high pb loads in soils around Lavrio, Greece. Applied Geochemistry, 17, 1029–1045.CrossRefGoogle Scholar
  68. Korte, N. E., & Fernando, Q. (1991). A review of Arsenic (III) in groundwater. CRC Critical Reviews in Environmental Control CCECAU, 21(1), 1–39.Google Scholar
  69. Laparra, J. M., Velez, D., Barbera, R., Farre, R., & Montoro, R. (2005). Bioavailability of inorganic Arsenic in cooked rice: Practical aspects for human risk assessment. Journal of Agricultural and Food Chemistry, 53(22), 8829–8833.CrossRefGoogle Scholar
  70. Lin, C. W. (2002). Mapping soil lead and remediation needs in contaminated soils. Enviornmental Geochemistry and Health, 24(1), 23–33.CrossRefGoogle Scholar
  71. Liu, C. W., Liang, C. P., Huang, F. M., & Hsueh, Y. M. (2006). Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Science of the Total Environment, 361(1–3), 57–66.CrossRefGoogle Scholar
  72. Llobet, J. M., Falco, G., Casas, C., Teixido, A., & Domingo, J. L. (2003). Concentration of Arsenic, Cadmium, Mercury, and Lead in common foods and estimated daily intake by children, adolescents, adults and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51(3), 838–842.CrossRefGoogle Scholar
  73. Lovertt, A. A., Parfitt, J. P., & Brainard, J. S. (1997). Using GIS in risk analysis: A case study of hazardous waste transport. Risk Analysis, 17(5), 625–633.CrossRefGoogle Scholar
  74. Luzi, L. (1995). Application of available modeling to zoning of landslide hazard in Fabriano Area, Central Italy. In JEC-GI ‘95 (pp. 398–403). The Hague.Google Scholar
  75. Maidment, R. D. (1996). Environmental modelling within GIS. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 315–324). New York: Oxford University Press.Google Scholar
  76. Mauro, C. D., Hoogerwerf, M., & Sinke, A. J. C. (2000). A GIS Based risk assessment model: Application on sites contaminated by chlorinated solvents and petroleum hydrocarbons (BTEX). In Fourth International Conference on Integrating GIS and Environmental Modelling (GIS/EM4): Problems, Prospects and Research Needs. Alberta, Canada.Google Scholar
  77. Mazumder, G. D. N., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakroborti, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27(5), 871–877.CrossRefGoogle Scholar
  78. McGrath, D., Zangh, C. S., & Carton, O. (2004). Geostatistical analyses and hazard assessment on soil lead in silvermines area, Ireland. Environmental Pollution, 127(2), 239–248.CrossRefGoogle Scholar
  79. Meharg, A. A. (2006). Arsenic contamination of Bangladesh rice. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing Arsenic in the environment: From soil to human health (pp. 273–282). Australia: CSIRO.Google Scholar
  80. Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science Technology, 37(2), 229–234.CrossRefGoogle Scholar
  81. Ministry of Agriculture, Fisheries and Food (MAFF). (1999). Total Diet Study: Aluminum, arsenic, cadmium, chromium, cropper, lead, mercury, nickel, selenium, tin and zinc. Food surveillance information sheet, No. 191. London: HMSO.Google Scholar
  82. Mitra, S. R., Mazumder, D. N. G., Basu, A., Block, G., Haque, R., Samanta, S., et al. (2004). Nutritional factors and susceptibility to arsenic—caused skin lesions in West Bengal, India. Environmental Health Perspectives, 112(10), 1104–1109.Google Scholar
  83. Mohri, T., Hisanaga, A., & Ishinishi, N. (1990). Arsenic intake and excretion by Japanese adults: A 7-day duplicate diet study. Food Chemical Toxicity, 28(7), 521–529.CrossRefGoogle Scholar
  84. Morra, P., Bagli, S., & Spadoni, G. (2006). The analysis of human healthy risk with a detailed procedure operating in a GIS environment. Environment International, 32(4), 444–454.CrossRefGoogle Scholar
  85. Naidu, R., & Skinner, H. (1999). Arsenic contamination of rural ground water supplies in Bangladesh and India: Implications for soil quality, animal and human health. In C. Barber, B. Humphries, & J. Dixon (Eds.), International conference on diffuse pollution (pp. 407–417). Perth, Australia: CSIRO.Google Scholar
  86. Ortigosa, G. R., Leo, G. A., & Gatto, M. (2000). VVF: Integrating modelling and GIS in a software tool for habitat suitability assessment. Environment Modelling Software, 15(1), 1–12.CrossRefGoogle Scholar
  87. Owens G., Rahman M. M., Heinrich T., & Naidu R. (2004). Bangladesh–Australia Centre for Arsenic Mitigation Program (BACAMP): Program 3: Safe Food, Sect. 1: Arsenic Food Chain Assessment. University of South Australia, Consultancy report for GHD Pty Ltd.Google Scholar
  88. Parrish, D. A., Townsend, L., Saunders, J., Carney, G., & Langston, C. (1993). US EPA region 6 comparative risk project: Evaluating ecological risk. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 318–331). New York: Oxford University Press.Google Scholar
  89. Patel, S. K., Shrivas, K., Brandt, R., Jakubowski, N., Corns, W., & Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health, 27(2), 131–145.CrossRefGoogle Scholar
  90. Pomroy, C., Charbonneau, S. M., McCullough, R. S., & Tam, G. K. (1980). Human retention studies with 74As. Toxicology and Applied Pharmacology, 53(3), 550–556.CrossRefGoogle Scholar
  91. Reis, A. P., Sousa, A. J., Da Silva, F., & Fonseca, C. (2005). Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde-Portugal). Enviornmental Geochemistry and Health, 27(3), 259–270.CrossRefGoogle Scholar
  92. Rejeski, D. (1993). GIS and risk: A three-cultural problem. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 318–331). New York: Oxford University Press.Google Scholar
  93. Roberts, S. M., Weimar, W. R., Vinson, J. R. T., Munson, J. W., & Bergeron, R. J. (2002). Measurement of Arsenic bioavailability in soil using primate model. Toxicological Sciences, 67, 303–310.CrossRefGoogle Scholar
  94. Robson, M. (2003). Methodologies for assessing exposures to metals: Human host factor. Ecotoxicology and Environmental Safety, 56(1), 104–109.CrossRefGoogle Scholar
  95. Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7), 795–805.Google Scholar
  96. Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. The Science of the Total Environment, 308, 15–35.CrossRefGoogle Scholar
  97. Roychowdhury, T., Uchino, T., Tokunaga, H., & Ando, M. (2002). Survey of arsenic in food composites from as aresenic-affected area of West Bengal, India. Food Chemical Toxicology, 40, 1611–1621.CrossRefGoogle Scholar
  98. Ryan, P. B., Huet, N., & MacIntosh, D. L. (2000). Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Enviornmental Health Perspectives, 108(8), 731–735.CrossRefGoogle Scholar
  99. Sabel, C. E., Gatrell, A. C., Loytonen, M., Maasilta, P., & Jokelainen, M. (2000). Modelling exposure opportunities: estimating relative risk for motor neuron disease in Finland. Social Science Medicine, 50(7–8), 1121–1137.CrossRefGoogle Scholar
  100. Sapunar-Postruznik, J., Bazulic, D., & Kubala, H. (1996). Estimation of dietary intake of arsenic in the general population of Republic of Croatia. The Science of the Total Environment, 191, 119–123.CrossRefGoogle Scholar
  101. Schoof, R. A., Yost, L. J., Eickhoof, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., et al. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8), 839–846.CrossRefGoogle Scholar
  102. Sekhar, K. C., Chary, N. S., Kamla, C. T., Rao, J. V., Balaram, V., & Anjaneyulu, Y. (2003). Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environment International, 29(5), 601–611.CrossRefGoogle Scholar
  103. Serre, M. L., Kolovos, A., Christakos, G., & Modis, K. (2003). An application of the holistochastic human exposure methodology to naturally occurring arsenic in Bangladesh Drinking Water. Risk Analysis, 23(3), 515–528.CrossRefGoogle Scholar
  104. Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: A review. Advances in Agronomy, 64, 149–195.CrossRefGoogle Scholar
  105. Stein, A., Staritsky, I., & van Groenigen, J. W. (1995). Interactive GIS for environmental risk assessment. International Journal Geographic Information System, 9(5), 509–525.CrossRefGoogle Scholar
  106. Sydelko, P. J., Dolph, J. E., Majerus, K. A. & Taxon, T. N. (2000). An advance object-based software framework for complex ecosystem modeling and simulation. In Fourth International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs (pp. 1–9). Alberta, Canada.Google Scholar
  107. Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis—A health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.CrossRefGoogle Scholar
  108. Tseng, W. P. (1977). Effects and dose-response relationships of skin cancer and Blackfoot diseases with arsenic. Environmental Health Perspectives, 19, 109–119.CrossRefGoogle Scholar
  109. Tsuda, T., Inoue, T., Kojima, M., & Aoki, S. (1995). Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults. Journal of AOAC International, 78(6), 1363–1368.Google Scholar
  110. Uchino, T., Roychowdhury, T., Ando, M., & Tokunaga, H. (2006). Intake of arsenic from water, food composites and excretion through urine, hair from a studied population in West Bengal, India. Food and Chemical Toxicology, 44, 455–461.CrossRefGoogle Scholar
  111. Wadge, G., Wislocki, A. P., & Pearson, E. J. (1993). Spatial analysis in GIS for natural hazards assessment. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 332–338). USA: Oxford University Press.Google Scholar
  112. Watanabe, C., Kawata, A., Sudo, N., Sekiyama, M., Inaoka, T., Bae, M., et al. (2004). Water intake in an Asian population living in arsenic contaminated area. Toxicology and Applied Pharmacology, 198, 272–282.CrossRefGoogle Scholar
  113. WHO. (2001). Arsenic and arsenic compounds (2nd ed., Environmental health criteria, 224). International Programme on Chemical Safety, 521 S. Geneva: World Health Organization.Google Scholar
  114. Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Enviornmental Science and Technology, 39, 5531–5540.CrossRefGoogle Scholar
  115. Wilson, H. L. (1997). Simple environmental exposure models in a GIS Framework. In Term project report. University of Texas, Austin.Google Scholar
  116. Yost, L. J., Tao, S.-H., Egan, S. K., Barraj, L. M., Smith, K. M., Tsuji, J. S., et al. (2004). Estimation of dietary intake of inorganic arsenic in U.S. children. Human and Ecological Risk Assessment, 10(3), 473–483.CrossRefGoogle Scholar
  117. Yu, W. H., Harvey, C.m., & Harvey, C. F. (2003). Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resources Research, 39(6), 1–17.CrossRefGoogle Scholar
  118. Zandbergen, P. A. (1998). Urban watershed ecological risk assessment using GIS: A case study of the Brunette River watershed in British Columbia, Canada. Journal of Hazardous Materials, 61(1), 163–173.CrossRefGoogle Scholar
  119. Zhang, J., Chen, X., Parkpian, P., & Sriratana, M. (2001). GIS application on arsenic contamination and its risk assessment in Ronphibun, Nakhorn Si Thammarat, Thailand. Geographical Information Sciences, 7(2), 69–78.Google Scholar
  120. Zhang, J., Hodgson, J., & Erkut, E. (2000). Using GIS to assess the risks of hazardous materials transport in networks. European Journal of Operational Research, 121(2), 316–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nasreen Islam Khan
    • 1
    • 2
  • Gary Owens
    • 1
  • David Bruce
    • 3
  • Ravi Naidu
    • 1
  1. 1.Centre for Risk Assessment and Remediation (CERAR)University of South AustraliaMawson LakesAustralia
  2. 2.Department of Geography and EnvironmentDhaka UniversityDhakaBangladesh
  3. 3.The Barbara Hardy Centre for Sustainable Urban Environments, School of Natural and Built EnvironmentsUniversity of South AustraliaAdelaideAustralia

Personalised recommendations