Environmental Geochemistry and Health

, Volume 31, Supplement 1, pp 167–177 | Cite as

Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices

  • Matthew ReesEmail author
  • Lloyd Sansom
  • Allan Rofe
  • Albert L. Juhasz
  • Euan Smith
  • John Weber
  • Ravi Naidu
  • Tim Kuchel
Original Paper


The assessment of arsenic (As) bioavailability from contaminated matrices is a crucial parameter for reducing the uncertainty when estimating exposure for human health risk assessment. In vivo assessment of As utilising swine is considered an appropriate model for human health risk assessment applications as swine are remarkably similar to humans in terms of physiology and As metabolism. While limited in vivo As bioavailability data is available in the literature, few details have been provided regarding technical considerations for performing in vivo assays. This paper describes, with examples, surgical, experimental design and analytical issues associated with performing chronic and acute in vivo swine assays to determine As bioavailability in contaminated soil and food.


Arsenic Bioavailability In vivo Swine 



This research was funded through the Australian Research Council Linkage Grant Scheme, Grant number LP0347301. In vivo assays were approved and conducted according to application No. 17/02 of the Institute for Medical and Veterinary Science Animal Ethics Committee. The authors would like to acknowledge the support of the Centre for Environmental Risk Assessment and Remediation (University of South Australia), Centre for Pharmaceutical Studies (University of South Australia), and the Institute for Medical and Veterinary Science for this research.


  1. Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science and Technology, 36, 962–968.CrossRefGoogle Scholar
  2. Agilent Technologies. (2006). Determination of heavy metals in whole blood by ICP-MS. Agilent Technologies publication number 5988-0533EN.Google Scholar
  3. Akter, K. F., Chen, Z., Smith, L., Davey, D., & Naidu, R. (2005). Speciation of arsenic in groundwater samples: a comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 68, 406–415.CrossRefGoogle Scholar
  4. Bain, S. A. F., Ting, J., Simeonovic, C. J., & Wilson, J. D. (1991). Technique of venous catheterization for sequential blood sampling from the pig. Journal of Investigative Surgery, 4, 103–107.CrossRefGoogle Scholar
  5. Casteel, S. W., Brown, L. D., Dunsmore, M. E., Weis, C. P., Henningsen, G. M., Hoffman, E., Brattin, W., Hammon, T. L. (1997). Relative bioavailability of arsenic in mining wastes. Document control no. 4500-88-AORH. U.S. Environmental Protection Agency, Region 8, Denver, CO.Google Scholar
  6. Csanaky, I., & Gregus, Z. (2002). Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 131, 355–365.CrossRefGoogle Scholar
  7. Freeman, G. B., Johnson, J. D., Killinger, J. M., Liao, S. C., Davis, A. O., Ruby, M. V., et al. (1993). Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundamental and Applied Toxicology, 21, 83–88.CrossRefGoogle Scholar
  8. Freeman, G. B., Schoof, R. A., Ruby, M., Davis, A. O., Dill, S. C., Liao, S. C., et al. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundamental and Applied Toxicology, 28, 215–222.CrossRefGoogle Scholar
  9. Gregus, Z., Gyurasics, A., & Csanaky, I. (2000). Biliary and urinary excretion of inorganic arsenic: monomethylarsonous acid as a major biliary metabolite in rats. Toxicology Science, 56, 18–25.CrossRefGoogle Scholar
  10. Groen, K., Vaessen, H., Kliest, J. J. G., de Boer, J. L. M., Ooik, T. V., Timmerman, A., et al. (1994). Bioavailability of inorganic arsenic from bog ore-containing soil in the dog. Environmental Health Perspectives, 102, 182–184.CrossRefGoogle Scholar
  11. Guha Mazumder, D. N., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakraborti, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871–877.CrossRefGoogle Scholar
  12. Guo, H. R., Chiang, H. S., Hu, H., Lipsitz, S. R., & Monson, R. R. (1997). Arsenic in drinking water and incidence of urinary cancers. Epidemiology, 8, 545–550.CrossRefGoogle Scholar
  13. Gyurasics, A., Varga, R., & Gregus, Z. (1991). Glutathione-dependent biliary excretion of arsenic. Biochemistry and Pharmacology, 42, 465–468.CrossRefGoogle Scholar
  14. Holliman, C. J., Kenfield, K., Nutter, E., Saffle, J. R., & Warden, G. D. (1982). Technique for acute subpubic catheterisation of urinary bladder in the pig. American Journal of Veterinary Research, 43, 1056–1057.Google Scholar
  15. Hughes, M. F., Devesa, V., Adair, B. M., Styblo, M., Kenyon, E. M., & Thomas, D. J. (2005). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 208, 186–197.CrossRefGoogle Scholar
  16. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114, 1826–1831.Google Scholar
  17. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere. doi:  10.1016/j.chemosphere.2007.05.018.
  18. Kelly, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Ohio: Battelle Press.Google Scholar
  19. Lien, H. C., Tsai, T. F., Lee, Y. Y., & Hsiao, C. H. (2001). Merkel cell carcinoma and chronic arsenicism. Journal of the American Academy of Dermatology, 41, 641–643.Google Scholar
  20. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.CrossRefGoogle Scholar
  21. Ng, J. C., Kratzmann, S. M., Qi, L., Crawley, H., Chiswell, B., & Moore, M. (1998). Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst, 123, 889–892.CrossRefGoogle Scholar
  22. Rahman, M. M., Chowdhury, U. K., Mukherjee, S. C., Mondal, B. K., Paul, K., Lodh, D., et al. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India: a review and commentary. Journal of Toxicology: Clinical Toxicology, 39, 683–700.CrossRefGoogle Scholar
  23. Roberts, S. M., Weimar, W. R., Vinson, J. R. T., Munson, J. W., & Bergeron, R. J. (2002). Measurement of arsenic bioavailability in soil using a primate model. Toxicology Science, 67, 303–310.CrossRefGoogle Scholar
  24. Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.CrossRefGoogle Scholar
  25. Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.CrossRefGoogle Scholar
  26. Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: a review. Advances in Agronomy, 64, 149–195.CrossRefGoogle Scholar
  27. Thurmon, J. C., Nelson, D. R., Bevill, R. F., Harrnigton, G. W., & Magee, D. N. (1987). Surgical procedure for chronic bilary sample collection in pigs. American Journal of Veterinary Research, 48, 988–989.Google Scholar
  28. USEPA. (1998). Method 3051A, microwave assisted acid digest of sediments, sludges, soils and oils. In USEPA methods, pp 3051A/1-24.Google Scholar
  29. Weis, C. P., & LaVelle, J. M. (1991). Characteristics to consider when choosing an animal model for the study if lead bioavailability. Chemical Speciation and Bioavailability, 3, 113–119.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Matthew Rees
    • 1
    Email author
  • Lloyd Sansom
    • 2
  • Allan Rofe
    • 1
  • Albert L. Juhasz
    • 3
  • Euan Smith
    • 3
  • John Weber
    • 3
  • Ravi Naidu
    • 3
    • 4
  • Tim Kuchel
    • 1
  1. 1.Institute for Medical and Veterinary ScienceAdelaideAustralia
  2. 2.Sansom Institute, School of Pharmacy and Medical Sciences, Division of Health ScienceUniversity of South AustraliaAdelaideAustralia
  3. 3.Centre for Environmental Risk Assessment and Remediation, Division of Information Technology, Engineering and the EnvironmentUniversity of South AustraliaMawson LakesAustralia
  4. 4.Cooperative Research Centre for Contamination Assessment and Remediation of the EnvironmentMawson LakesAustralia

Personalised recommendations