Advertisement

Environmental Geochemistry and Health

, Volume 31, Supplement 1, pp 23–43 | Cite as

Groundwater chemistry and arsenic mobilization in the Holocene flood plains in south-central Bangladesh

  • Prosun Bhattacharya
  • M. Aziz Hasan
  • Ondra Sracek
  • Euan Smith
  • K. Matin Ahmed
  • Mattias von Brömssen
  • S. M. Imamul Huq
  • Ravi Naidu
Original Paper

Abstract

A comparative study of arsenic enrichment in the Bengal Delta (BD) was carried out in three alluvial aquifers in south-central Bangladesh. Investigated sites included Sonargaon in Narayanganj, Chandina in Comilla and Sirajdikhan in Munshiganj districts. At all sites samples from different depths were collected, and water chemistry and redox status vs. depth trends were determined. The concentrations of DOC and HCO3 were highest at Sirajdikhan site, while at the Sonargaon and Chandina sites the concentrations were lower. On the contrary, the NH4 + concentration was high at the Chandina site as compared to the other sites. There was a good match between dissolved As and Fe at the Sirajdikhan and Sonargaon sites, but not at the Chandina site. The dissolved aqueous concentration of Mn was low at the Chandina site, which suggested that the Mn(IV) redox buffering step was missing. Speciation modeling indicated a possibility of siderite precipitation at all sites, but precipitation of rhodochrosite only at the Sonargaon and Sirajdikhan sites. At the Sirajdikhan site, the log \( {\text{P}}_{{{\text{CO}}_{ 2} }} \) values were very high (−1.37), which revealed the production of CO2 in redox processes. Principal component analysis (PCA) indicated an impact of sea water and redox status of different samples. These results suggest that the dissolved As is de-coupled from dissolved Mn because when released, As is re-adsorbed onto the Fe(III) minerals in solid phase, as well as from dissolved Fe when precipitation of Fe(II) minerals controls the aqueous concentrations of Fe. In addition, several other concurrent redox processes may exert kinetic constraints depending on refractory characteristics of Fe(III) minerals.

Keywords

Groundwater Bangladesh Arsenic Redox buffering Speciation Precipitation of secondary minerals 

Notes

Acknowledgements

This study was carried out as a part of a research project funded by the Australian Council of International Agricultural Research and the CSIRO’s Contaminated Land and Water Environments Program at Adelaide, South Australia. PB thanks the CSIRO for providing the necessary funds for the field work in Bangladesh in January 2002 and the other infrastructural facilities. PB also acknowledges the financial assistance from the Swedish Research Council (VR) in the form of a travel grant, Swedish International Development Cooperation Agency (Sida-SAREC) and Swedish Research Council (VR-Sida), Swedish Asia Research Link Program through research grants SWE-1998-193 and 348-2003-4963, respectively, on the genesis of high-As groundwaters of Bangladesh. OS was partly supported by the grant MSM0021622412 of the Czech Ministry of Education, Youth and Sport. The authors would like to thank Anisur Rahman (Dhaka University) and Gary Owens (CSIRO) for the field work and Lester Smith and Julie Smith for the laboratory analyses at the chemical laboratory of CSIRO Land and Water.

References

  1. Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127–1137.CrossRefGoogle Scholar
  2. Ahmed, K. M. (1994). Hydrogeology of the Dupi Tila aquifer of the Barind Tract, NW Bangladesh. Ph.D. Thesis, University of London, 414 pp (Unpublished).Google Scholar
  3. Ahmed, K. M. (2005). Management of groundwater arsenic disaster in Bangladesh. In J. Bundschuh, P. Bhattacharya, & D. Chandrasekharam (Eds.), Natural arsenic in groundwater: occurrences, remediation and management (pp. 283–296). London: Taylor & Francis Group.Google Scholar
  4. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19(2), 181–200.CrossRefGoogle Scholar
  5. Ahmed, K. M., Hoque, M., Hasan, M. K., Ravenscroft, P., & Chowdhury, L. R. (1998). Origin and occurrence of water well methane gas in Bangladesh aquifers. Journal of Geological Society of India, 51, 697–708.Google Scholar
  6. Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19(2), 215–230.CrossRefGoogle Scholar
  7. Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.CrossRefGoogle Scholar
  8. Appelo, C. A. J., van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–3103.CrossRefGoogle Scholar
  9. Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., & Kim, J. I. (2000). Characterization of groundwater humic substances: Influence of sedimentary organic carbon. Applied Geochemistry, 15(1), 97–116.CrossRefGoogle Scholar
  10. BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh. Vol. 2 Final Report, BGS Technical Report WC/00/19.Google Scholar
  11. Bhattacharya, A., Routh, J., Saraswathy, A., Jacks, G., & Bhattacharya, P. (2003). Influence of microbes on the mobilization and speciation of arsenic from mine tailings in Adak, Vasterbotten district, Sweden. In G. R. Gobran & N. Lepp (Eds.), Proceedings of the 7th International Conference on the Biogeochemistry of Trace Elements, Volume 2 (Symposia) Symposium 1. Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, June 15–19, 2003, Uppsala, Sweden, pp. 58–59.Google Scholar
  12. Bhattacharya, P. (2002). Arsenic contaminated groundwater from the sedimentary aquifers of south-east Asia. In E. Bocanegra, D. Martinez, & H. Massone (Eds.), Groundwater and Human Development, Proceedings of the XXXII IAH and VI AHLSUD Congress, Mar del Plata, Argentina, October 22–25, 2002, pp. 357–363.Google Scholar
  13. Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Broms, S., Fogelström, J., Jacks, G., et al. (2006). Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health (pp. 95–115). Melbourne, Australia: CSIRO Publishing.Google Scholar
  14. Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: Options for safe drinking water supply. International Journal of Water Resource Management, 13, 79–92.CrossRefGoogle Scholar
  15. Bhattacharya, P., Frisbie, S. H., Smith, E., Naidu, R., Jacks, G., Sarkar, B., et al. (2002a). Arsenic in the environment: A global perspective. In B. Sarkar (Ed.), Handbook of heavy metals in the environment (pp. 145–215). New York: Marcell Dekker Inc.Google Scholar
  16. Bhattacharya, P., Jacks, G., Jana, J., Sracek, A., Gustafsson, J. P., & Chatterjee, D., (2001). Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implications on arsenic contamination in groundwater. In G. Jacks, P. Bhattacharya, & A. A. Khan (Eds.), Groundwater Arsenic Contamination in the Bengal Delta Plain of Bangladesh. KTH Special Publication. TRITA-AMI Report 3084 (pp. 21–40).Google Scholar
  17. Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., Routh, J., et al. (2002b). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538–545.CrossRefGoogle Scholar
  18. Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 379, 109–120. doi: 10.1016/j.scitotenv.2007.02.037.CrossRefGoogle Scholar
  19. Bothe, J. V., & Brown, P. W. (1999). The stabilities of calcium arsenates. Journal of Hazardous. Material, 69(2), 197–207.CrossRefGoogle Scholar
  20. Brammer, H. (1996). The geography of the soils of Bangladesh. Dhaka, Bangladesh: University Press Ltd.Google Scholar
  21. Breit, G. N., Foster, A. L., Sanzalone, R. F., Yount, J. C., Whitney, J. W., Welch, A. H., et al. (2001). Arsenic cycling in eastern Bangladesh: The role of phyllosilicates. Geological Society of America, Abstracts with Programs, 32(7), A192.Google Scholar
  22. Broms, S., & Fogelström, J. (2001). Field investigations of arsenic-rich groundwater in the Bengal Delta Plain, Bangladesh: An interbasinal comparison of mechanisms for arsenic translocation and test of low-cost remediation technology. M.Sc. Thesis, Series 2001:18, Department of Land and Water Engineering, KTH, Stockholm, Sweden.Google Scholar
  23. Buckau, G., Artinger, R., Geyer, S., Wolf, M., Fritz, P., & Kim, J. I. (2000). Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon. Applied Geochemistry, 15(6), 819–832.CrossRefGoogle Scholar
  24. Chakraborty, S., Wolthers, M., Chatterjee, D., & Charlet, L. (2007). Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science, 309(2), 392–401.CrossRefGoogle Scholar
  25. Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.Google Scholar
  26. Correll, R., Huq, S. M. I., Smith, E., Owens, G., & Naidu, R. (2006). Dietary intake of arsenic from crops: Overview from the Bangladesh study. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health. (pp. 255–271). Melbourne, Australia: CSIRO Publishing.Google Scholar
  27. Dodd, J., Large, D. J., Fortey, N. J., Milodowski, A. E., & Kemi, S. (2000). A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud. Environmental Geochemistry and Health, 22, 281–296.CrossRefGoogle Scholar
  28. Dowling, C. B., Poreda, R. J., Basu, A. R., & Peters, S. L. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research 38(9), 12-1–12-18.Google Scholar
  29. Farid, A. T. M., Roy, K. C., Hossian, K. M., & Sen, S. (2003). A study of arsenic contaminated irrigation water and its carried over effect on vegetables. In M. Ahmed, M. A. Ali, & Z. Adeel (Eds.), Fate of arsenic in the environment (pp. 113–121). Dhaka: BUET and UNU.Google Scholar
  30. Foster, A. L., Breit, G. N., Welch, A. H., Whitney, J. W., Yount, J. C., Islam, M. S., et al. (2000). In-situ identification of arsenic species in soil and aquifer sediment from Ramrail, Brahmanbaria, Bangladesh. Eos Transactions of the American Geophysical Union, 81(48), 523.Google Scholar
  31. Frisbie, S. H., Ortega, R., Maynard, D. M., & Sarkar, B. (2002). The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environmental Health Perspective, 110(11), 1147–1153.Google Scholar
  32. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for educational and data analysis. Paleontologia Electronica 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
  33. Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.CrossRefGoogle Scholar
  34. Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., von Brömssen, M., Broms, S., et al. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeology Journal, 15, 1507–1522.CrossRefGoogle Scholar
  35. Hasan, M. A., von Brömssen, M., Bhattacharya, P., Ahmed, K. M., Sikder, A. M., Jacks, G., & Sracek, O. Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi upazila in the Meghna flood plain, Bangladesh. Environmental Geology. doi:  10.1007/s00254-008-1319-8 (in press).
  36. Horneman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68(17), 3459–3473.CrossRefGoogle Scholar
  37. Hoque, M., Ravenscroft, P., & Hasan, M. K. (2003). Investigation of groundwater salinity and gas problems in Southeast Bangladesh. In A. A. Rahman & P. Ravenscroft (Eds.), Groundwater resources and development in Bangladesh (pp. 373–390). Dhaka: The University Press Limited.Google Scholar
  38. Huq, S. M. I., Correll, R., & Naidu, R. (2006). Arsenic accumulation in food sources in Bangladesh. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health (pp. 283–293). Melbourne, Australia: CSIRO Publishing (ISBN 0643068686).Google Scholar
  39. Kent, D. B., & Fox, P. A. (2004). The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochemical Transactions, 5(1), 1–11.CrossRefGoogle Scholar
  40. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal ant its worldwide implications. Applied Geochemistry, 19, 1255–1293.CrossRefGoogle Scholar
  41. McArthur, J. M., Ravencroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resources Research, 37, 109–117.CrossRefGoogle Scholar
  42. Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234.CrossRefGoogle Scholar
  43. Meng, X., Korfiatis, G. P., Christodoulatos, C., & Bang, S. (2001). Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system. Water Research, 35, 2805–2810.CrossRefGoogle Scholar
  44. Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and India. Geological Soceity of Americal Bulletin, 70, 319–342.CrossRefGoogle Scholar
  45. Mukherjee, A. B., & Bhattacharya, P. (2001). Arsenic in groundwater in the Bengal Delta Plain: Slow poisoning in Bangladesh. Environmental Reviews, 9(3), 189–220.CrossRefGoogle Scholar
  46. Mukherjee, A., von Bromssen, M., Scanlon, B. R., Bhattacharya, P., Fryar, A. E., Hasan, M. A., et al. (2008). Hydrogeochemical comparison between the Bhagirathi and Meghna sub-basins, Bengal basin, India and Bangladesh: Effects of overlapped redox zones on dissolved arsenic. Journal of Contaminant Hydrology, 99(1–4), 31–48.CrossRefGoogle Scholar
  47. Naidu, R., Smith, E., Huq, I., & Owens, G. (2008) Sorption and bioavailability of arsenic in selected Bangladesh soils. Environmental Geochemistry and Health. doi: 10.1007/s10653-008-9229-y.Google Scholar
  48. Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of groundwater in Bangladesh. Nature, 395, 338.CrossRefGoogle Scholar
  49. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.CrossRefGoogle Scholar
  50. Parkhurst, D. L., & Appelo, C. A. J. (1999). Users Guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. U.S. Geological Survey Water Resources Investigation Report 99-4259.Google Scholar
  51. Ravenscroft, P. (2003). Overview of the hydrogeology of Bangladesh. In A. A. Rahman & P. Ravenscroft (Eds.), Groundwater resources and development in Bangladesh (pp. 43–86). Dhaka: The University Press Limited.Google Scholar
  52. Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of Bengal Basin: Distribution, field relations and hydrogeological setting. Hydogeology Journal, 13, 727–751.CrossRefGoogle Scholar
  53. Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and paleohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Fourth International Conference on Arsenic Exposure and Health Effects.Google Scholar
  54. Reimann, K.-U. (1993). Peat deposits of Bangladesh. In K.-U. Reimann (Ed.), The geology of Bangladesh. Berlin: Gebruder Borntraeger.Google Scholar
  55. Routh, J., Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Rahman, M. M. (2000). Arsenic geochemistry of Tala groundwater and sediments from Satkhira District, Bangladesh. Eos Transactions of the American Geophysical Union, 81(48), 550.Google Scholar
  56. Saunders, J. A., Lee, M. K., Uddin, A., Shahnewaz, M. Wilkin, R. T., Fayek, M., & Korte, N. E., (2005). Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry Geophysics Geosystems 6, Q04006. doi:  10.1029/2004GC000803.
  57. SIS (1996). Water quality. Determination of alkalinity-Part2: Determination of carbonate alkalinity. (SS-EN ISO 9963-2), pp. 10.Google Scholar
  58. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  59. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organisation, 78(9), 1093–1103.Google Scholar
  60. Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment, 379(2–3), 133–150.CrossRefGoogle Scholar
  61. Swartz, C. H., Blute, N. K., Bodruzzaman, B., Ali, A., Brabander, D., Jay, J., et al. (2004). Mobility of arsenic in Bangladesh aquifer: Inferences from geochemical profiles, leaching data and mineralogical characterization. Geochimica et Cosmochimica Acta, 68(22), 4539–4557.CrossRefGoogle Scholar
  62. Umitsu, M. (1987). Late Quaternary sedimentary environment and landform evolution in the Bengal Lowland. Geographical Reviews of Japan (Series B), 60, 164–178.Google Scholar
  63. Umitsu, M. (1993). Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sedimentary Geology, 83, 177–186.CrossRefGoogle Scholar
  64. Vencelides, Z., Sracek, O., & Prommer, H. (2007). Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. Journal of Contaminant Hydrology, 89, 270–294.CrossRefGoogle Scholar
  65. von Brömssen, M., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., et al. (2007). Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. Science of the Total Environment, 379(2–3), 121–132.CrossRefGoogle Scholar
  66. von Brömssen, M., Larsson, S. H., Bhattacharya, P., Hasan, M. A., Ahmed, K. M., Jakariya, M., et al. (2008). Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, Southeastern Bangladesh—implications for targeting low-As aquifers. Journal of Contaminant Hydrology, 99(1–4), 137–149.CrossRefGoogle Scholar
  67. Whiting, K. S. (1992). The thermodynamics and geochemistry of As with the application to subsurface waters at the Sharon Steel Superfund Site Midvale, Utah, M.Sc. thesis, Colorado School of Mines.Google Scholar
  68. WHO. (2001). Arsenic in drinking water: Fact Sheet 210. URL: http://www.who.int/mediacentre/factsheets/fs210/en/print.html (Accessed on April 13, 2006).
  69. WHO (2004). Guidelines for drinking-water quality (3rd edn., Vol. 1). Recommendations. Geneva: World Health Organization.Google Scholar
  70. Yu, W. H., Harvey, C. M., & Harvey, C. F. (2003). Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating the health effects and potential remedies. Water Resources Research, 39(6), 1146. doi: 10.1029/2002WR001327.CrossRefGoogle Scholar
  71. Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H. J., et al. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19(2), 201–214.CrossRefGoogle Scholar
  72. Zheng, Y., van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., et al. (2005). Geochemical and hydrogeological contrast between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implication for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta, 69(22), 5203–5218.CrossRefGoogle Scholar
  73. Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34(22), 4747–4753.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Prosun Bhattacharya
    • 1
  • M. Aziz Hasan
    • 1
    • 2
  • Ondra Sracek
    • 3
  • Euan Smith
    • 4
  • K. Matin Ahmed
    • 2
  • Mattias von Brömssen
    • 1
  • S. M. Imamul Huq
    • 5
  • Ravi Naidu
    • 4
  1. 1.KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources EngineeringRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of GeologyUniversity of DhakaDhakaBangladesh
  3. 3.Institute of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Centre for Environmental Risk Assessment & Remediation (CERAR)University of South AustraliaMawson LakesAustralia
  5. 5.Department of Soil, Water and EnvironmentUniversity of DhakaDhakaBangladesh

Personalised recommendations