Historical trends of trace metals in a sediment core from a contaminated tidal salt marsh in San Francisco Bay

  • Hyun-Min HwangEmail author
  • Peter G. GreenEmail author
  • Thomas M. Young
Original Paper


Sedimentation of metals preserves historical records of contaminant input from local and regional sources, and measurement of metals in sediment cores can provide information for reconstruction of historical changes in regional water and sediment quality. Sediment core was collected from Stege Marsh located in central San Francisco Bay (California, USA) to investigate the historical input of trace metals. Aluminum-normalized enrichment factors indicate that inputs from anthropogenic sources were predominant over natural input for Ag, Cu, Pb, and Zn. Among these, lead was the most anthropogenically impacted metal with enrichment factors ranging from 32 to 108. Depth profiles and coefficients of variation show that As, Cd, and Se were also influenced by anthropogenic input. The levels of these anthropogenically impacted metals decline gradually towards the surface due to regulation of the use of leaded gasoline, municipal and industrial wastewater discharge control, and closure of point sources on the upland of Stege Marsh. Although trace metal contamination is expected to be continuously declining, the rates of decline have slowed down. For lead, it is estimated to take 44, 82, and 153 years to decrease to probable effects level (112 μg/g), the San Francisco Bay ambient surface sediment level (43.2 μg/g), and the local baseline levels (5 μg/g), respectively. Some metals in surface sediments (0–6 cm) are still higher than sediment quality guidelines such as the probable effects level. To further facilitate the recovery of sediment quality, more efficient management plans need to be developed and implemented to control trace metals from non-point sources such as stormwater runoff.

Key words

Sediment core Metals Enrichment factors Anthropogenic input Tidal salt marsh 



We are thankful to Dr. Frances Malamud-Roam for her help in field sampling. We would like to thank Rodelia Busalpa, Yun Lu, William Schilling, and Marlene Relja for their help in laboratory chemical analysis. This research has been supported by a grant from the US Environmental Protection Agency’s Science to Achieve Results (STAR) Estuarine and Great Lakes (EaGLe) Coastal Initiative through funding to the Pacific Estuarine Ecosystem Indicator Research (PEEIR) Consortium, US EPA Agreement #EPA/R-82867601.


  1. Bay Area Census. (2000). Population by County, 1860–2000, Bay Area Census. Assessed 20 January 2008.
  2. Brinkmann, U. A. T., & de Kok, A. (1980). Production, properties, and usage. In R. D. Kimbrough, (Ed.), Halogenated bipheynyls, terpenyls, naphthalenes, dibenzodioxins and related products (2nd ed., Vol. 4). Topics in environmental health. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
  3. Cantwell, M. G., King, J. W., Burgess, R. M., & Appleby, P. G. (2007). Reconstruction of contaminant trends in a salt wedge estuary with sediment cores dated using a multiple proxy approach. Marine Environmental Research, 64, 225–246. doi: 10.1016/j.marenvres.2007.01.004.CrossRefGoogle Scholar
  4. Cook, J. M., Gardner, M. J., Griffiths, A. H., Jessep, M. A., Ravenscroft, J. E., & Yates, R. (1997). The comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin, 34, 637–644.CrossRefGoogle Scholar
  5. Daskalakis, K. D., & O’Connor, T. P. (1995). Normalization and elemental sediment contamination in the coastal United States. Environmental Science & Technology, 29, 470–477. doi: 10.1021/es00002a024.CrossRefGoogle Scholar
  6. Farmer, J. G., & Lovell, M. A. (1984). Massive diagenetic enhancement of manganese in Loch Lomond sediments. Environmental Technology Letters, 5, 257–262.CrossRefGoogle Scholar
  7. Flegal, A. R., Brown, C. L., Squire, S., Ross, J. R. M., Scelfo, G. M., & Hibdon, S. (2007). Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environmental Research, 105, 34–52. doi: 10.1016/j.envres.2007.05.006.CrossRefGoogle Scholar
  8. Goals Project. (1999). Baylands ecosystem habitat goals: A report of habitat recommendation. Oakland, CA: U.S. Environmental Protection Agency/San Francisco Bay Regional Water Quality Control Board.Google Scholar
  9. Hartmann, P. C., Quinn, J. G., Cairns, R. W., & King, J. W. (2005). Depositional history of organic contaminants in Narragansett Bay, Rhode Island, USA. Marine Pollution Bulletin, 50, 388–395. doi: 10.1016/j.marpolbul.2004.11.020.CrossRefGoogle Scholar
  10. Hornberger, M. I., Luoma, S. N., van Green, A., Fuller, C., & Anima, R. (1999). Historical trends of metals in the sediments of San Francisco Bay, California. Marine Chemistry, 64, 39–55. doi: 10.1016/S0304-4203(98)80083-2.CrossRefGoogle Scholar
  11. Hwang, H.-M., Green, P. G., Grosholz, E. D., Carr, R. S., Higashi, R. M., & Anderson, S. A. (2008a). Quality assessment of sediments in tidal salt marshes in California using a sediment quality triad approach. Journal of Environmental Science and Health Part A (submitted).Google Scholar
  12. Hwang, H.-M., Green, P. G., Higashi, R. M., & Young, T. M. (2006a). Tidal salt marsh sediment in California, USA. Part 2: Occurrence and anthropogenic input of trace metals. Chemosphere, 64, 1899–1909. doi: 10.1016/j.chemosphere.2006.01.053.CrossRefGoogle Scholar
  13. Hwang, H.-M., Green, P. G., & Young, T. M. (2006b). Tidal salt marsh sediment in California, USA. Part 1: Occurrence and sources of organic contaminants. Chemosphere, 64, 1383–1392. doi: 10.1016/j.chemosphere.2005.12.024.CrossRefGoogle Scholar
  14. Hwang, H.-M., Green, P. G., & Young, T. M. (2008b). Tidal salt marsh sediment in California, USA. Part 3: Current and historic toxicity potential of contaminants and their bioaccumulation. Chemosphere, 71, 2139–2149. doi: 10.1016/j.chemosphere.2008.01.005.CrossRefGoogle Scholar
  15. Lu, X. Q., Werner, I., & Young, T. M. (2005). Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Environment International, 31, 593–602. doi: 10.1016/j.envint.2004.10.018.CrossRefGoogle Scholar
  16. Nriagu, J. O. (1990). The rise and fall of leaded gasoline. The Science of the Total Environment, 92, 13–28. doi: 10.1016/0048-9697(90)90318-O.CrossRefGoogle Scholar
  17. Nriagu, J. O. (1994). Mercury pollution from the past mining of gold and silver in the Americas. The Science of the Total Environment, 149, 167–181. doi: 10.1016/0048-9697(94)90177-5.CrossRefGoogle Scholar
  18. Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Marine Environmental Research, 48, 161–176.CrossRefGoogle Scholar
  19. SFBRWQCB. (1998). Staff report: Ambient concentrations of toxic chemicals in San Francisco Bay sediments. Oakland, CA: San Francisco Bay Regional Water Quality Control Board.Google Scholar
  20. SFBRWQCB. (1999). Regional toxic hot spot cleanup plan. Oakland, CA: San Francisco Bay Regional Water Quality Control Board.Google Scholar
  21. SFBRWQCB. (2000). Fifty years of protecting Bay area waters. Oakland, CA: San Francisco Bay Regional Water Quality Control Board.Google Scholar
  22. Squire, S., Scelfo, G. M., Revenaugh, J., & Flegal, A. R. (2002). Decadal trends of silver and lead contamination in San Francisco Bay surface waters. Environmental Science & Technology, 36, 2379–2386. doi: 10.1021/es015746r.CrossRefGoogle Scholar
  23. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific: Oxford.Google Scholar
  24. Topping, B. R., & Kuwabara, J. S. (2003). Dissolved nickel and benthic flux in South San Francisco Bay: a potential for natural sources to dominate. Bulletin of Environmental Contamination and Toxicology, 71, 46–71. doi: 10.1007/s00128-003-0129-7.CrossRefGoogle Scholar
  25. URS. (2000). Filed sampling and analyses results, University of California, Berkeley Richmond Field Station/Stege Marsh, Richmond, California. Oakland, CA: URS.Google Scholar
  26. Van Dolha, R. F., Riekerk, G. H. M., Bergquist, D. C., Felber, J., Chestnut, D. E., & Holland, A. F. (2008). Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina’s coastal zone. The Science of the Total Environment, 390, 142–154. doi: 10.1016/j.scitotenv.2007.09.036.CrossRefGoogle Scholar
  27. Velinsky, D. J., Wade, T. L., Schlekat, C. E., McGee, B. L., & Presley, B. J. (1994). Tidal river sediments in the Washington, D.C. area. I. Distribution and sources of trace metals. Estuaries, 17, 305–320. doi: 10.2307/1352665.CrossRefGoogle Scholar
  28. Venkatesan, M. I., de Leon, R. P., van Geen, A., & Luoma, S. N. (1999). Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay. Marine Chemistry, 64, 85–97. doi: 10.1016/S0304-4203(98)90086-X.CrossRefGoogle Scholar
  29. Yee, D., Grieb, T., Mills, W., & Sedlak, M. (2007). Synthesis of long-term nickel monitoring in San Francisco Bay. Environmental Research, 105, 20–33. doi: 10.1016/j.envres.2007.02.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations