Environmental Geochemistry and Health

, Volume 30, Issue 4, pp 325–338 | Cite as

Environmental health impacts of East African Rift volcanism

Review Paper

Abstract

The East African Rift Valley (EARV) is a structure of a major order in the Earth’s crust. Accompanying volcanic activity has influenced greatly the nature of the soils and the geochemistry of ground and surface waters, an influence that is reflected in water and food quality. Direct volcanic impacts result from the up-welling of volatile, potentially harmful elements (PHE), such as F, As, and Hg, that dissolve directly into groundwaters. Intense tropical weathering results in clear redistribution of all but the most refractory elements to form distinct zones of micronutrient deficiencies and PHE excesses. Of concern, too, is human exposure to volcanic materials such as dust and clay-enriched soil fractions. Further alteration of the landscape geochemistry is being brought about by pollution from human activities, with increasing health concerns in many ecosystems of the region. This review shows that the unique distribution pattern of trace elements, imprinted by the East African Rift volcanism and modified by weathering and anthropogenic factors, correlates with a number of geochemical diseases in man and animals. It is submitted that accurate diagnoses of these diseases and associated health conditions, and prescription of appropriate remedies, must be founded upon a fundamental understanding of how the elements were naturally distributed in the first place. This can only be realised through the construction of complete geochemical databases for the region.

Keywords

East African Rift volcanism Element distribution Geochemical diseases 

References

  1. Abrahams, P. W. (1997). Geophagy (soil consumption) and iron supplementation in Uganda. Tropical Medicine and International Health, 2(7), 617–623.CrossRefGoogle Scholar
  2. Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291(1–3), 1–32.CrossRefGoogle Scholar
  3. Anyamba, A., Linthicum, K. J., Mahoney, R., Tucker, C. J., & Kelley, P. W. (2002). Mapping potential risk of Rift Valley fever outbreaks in African savannas using vegetation index time series data. Journal of the American Society for Photogrammetry and Remote Sensing, 68(2), 137–146.Google Scholar
  4. Baker, B. H. (1987). Outline of the petrology of the Kenya rift alkaline province. In J. G. Fitton & B. G. J. Upton (Eds.), Alkaline igneous rocks (pp. 293–312). London: Geological Society Special Publication, 30.Google Scholar
  5. Baker, B. H., Mohr, P. A., & Williams, L. A. J. (1972). Geology of the Eastern Rift System of Africa: Geological Society of America Special Paper, No. 136, 67 pp.Google Scholar
  6. Bakshi, A. K. (1974). Dental conditions and dental health. In L. C. Vogel, A. S. Muller, R. S. Odingo, Z. Onyango, & A. de Geus (Eds.), Health and disease in Kenya (pp. 519–522). Nairobi, Kenya: East Africa Literature Bureau.Google Scholar
  7. Barberi, F., & Santacroce, R. (1980). The Afar stratoid series and the magmatic evolution of East African rift system. Bulletin Societé Géologique Francaise, 7(22), 891–899.Google Scholar
  8. Beloussov, V. V., Gerasimovsky, V. I., Goryatchev, A. V., Dobrovolsky, V. V., Kapitsa, A. P., Logatchev, N. A., Milanovsky, E. E., Poliakov, A. I., Rykunov, L. N., & Sedov, V. V. (1974). The East African rift system, 3 Vols. III – Geochemistry, seismology, main results. (288 pp). Nauka: Moscow.Google Scholar
  9. Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017.CrossRefGoogle Scholar
  10. Bongonzo, J. C., Ojiambo, B. S., Lyons, W. B., Wilder, S., & Welch, K. (1996). Mercury concentrations in waters of Lake Naivasha. Geophysical Letters, 23(13), 158–1584.Google Scholar
  11. Brotzu, P., Ganzerli-Valentini, M. T., Morbidelli, L., Piccirillo, E. M., Stella, R., & Traversa, G. (1980a). Quaternary basaltic volcanism in the axial portion of the main Ethiopian rift (from 8° to 9° lat. N). In Geodynamic evolution of the Afro-Arabian rift system (Vol. 47, pp. 293–315). Atti Convegni Lincei Rome.Google Scholar
  12. Brotzu, P., Morbidelli, L., Piccirillo, E. M., & Traversa, G. (1980b). Volcanological and magmatological evidence of the Boseti volcanic complex (main Ethiopian rift). In Geodynamic evolution of the Afro-Arabian rift system (Vol. 47, pp. 317–366). Atti Convegni Lincei Rome.Google Scholar
  13. Campbell, L. M., Osano, O., Hecky, R. E., & Dixon, D. G. (2003). Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo) in East Africa. Environmental Pollution, 25, 281–286.CrossRefGoogle Scholar
  14. Cash, M. D., Klemperer, S. L., Mengistou, S., & EAGLE Working Group. (2003). Geochemical survey of lake and stream waters in central Ethiopia: No environmental impact from borehole explosions or from large underground explosions in Lake Arenguade and Lake Shala. Report, Stanford University/Addis Ababa University.Google Scholar
  15. Chamberlain, G. T. (1959). Trace elements in some East African soils and plants. 1. Cobalt, beryllium, lead, nickel and zinc. East African Agricultural Journal, 25, 12–125.Google Scholar
  16. Chapman, D. (1996). Water quality assessments: A guide to the use of Biota, sediments and water in environmental monitoring (2nd ed., Chap. 7). London: Chapman and Hall.Google Scholar
  17. Cherinet, A., & Kelbessa, U. (2000). Determinants of iodine deficiency in school children in different regions of Ethiopia. East African Medical Journal, 77, 133–137.Google Scholar
  18. Clarke, M. (1948). Lymphostatic verrucoses in the Fort Hall district. Transactions of the Royal Society of Tropical Medicine and Hygiene, 42, 287.CrossRefGoogle Scholar
  19. Clarke, M. C. G., Woodhall, D. G., Allen, D., & Darling, G. (1990). Geological, volcanological and hydrogeological controls on the occurrence of geothermal activity in the area surrounding Lake Naivasha, Kenya. Ministry of Energy/BGS Report (138 pp). Nairobi, Kenya.Google Scholar
  20. COMA. (1994). In Nutritional aspects of cardiovascular disease No. 46, Committee on Medical Aspects of Food Policy. London: HMSO.Google Scholar
  21. Crivelli, P. E. (1986). Non-filarial elephantiasis in Nyambene range: A geochemical disease. East African Medical Journal, 63(3), 191–194.Google Scholar
  22. Davies, T. C. (1994). Combating iodine deficiency disorders in Kenya: The need for a multi-disciplinary approach. International Journal of Environmental Health Research, 4, 236–243.CrossRefGoogle Scholar
  23. Davies, T. C. (1995). The geochemical behaviour of iodine in natural waters of the Kiambu and Eldoret areas of Kenya. In I. O. Nyambok (Ed.), Geology for development within a sustainable environment (pp. 637–642). Nairobi, Kenya: GSAf ‘95.Google Scholar
  24. Destas, K., Ashine, M., & Davey, G. (2003). Prevalence of podoconiosis (endemic non-filarial elephantiasis) in Wolaitta, southern Ethiopia. Tropical Doctor, 33(4), 217–220.Google Scholar
  25. Eskin, B. A. (1977). Iodine and mammary cancer. Advances in Experimental and Tropical Medicine, 91, 293–304.Google Scholar
  26. Frommel, D., Ayranci, B., Pfeifer, H. R., Sanchez, A., Frommel, A., & Mengistu, G. (1993). Podoconiosis in the Ethiopian Rift Valley: Role of beryllium and zirconium. Tropical and Geographical Medicine, 45(4), 165–167.Google Scholar
  27. Fuge, R. (1987). Iodine in the environment: Its distribution and relationship to human health. In D. D. Hemphill (Ed.), Trace substances in the environment (pp. 74–87). University of Missouri.Google Scholar
  28. Fuge, R. (1989). Iodine in waters: Possible links with endemic goitre. Applied Geochemistry 4, 203–208.CrossRefGoogle Scholar
  29. Fuge, R., & Johnson, C. C. (1986). The geochemistry of iodine: A review. Environmental Geochemistry and Health, 8, 31–54.CrossRefGoogle Scholar
  30. Fuller, L. C. (2005). Podoconiosis: Endemic nonfilarial elephantiasis. Current Opinion on Infectious Diseases, 18(2), 119–122.CrossRefGoogle Scholar
  31. Gaciri, S. J., & Davies, T. C. (1993). Occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.CrossRefGoogle Scholar
  32. Hanegraaf T. A. C., & McGill, P. E. (1974). Thyroid diseases: Population based studies of endemic goitre. In L. C. Vogel, A. S. Muller, R. S. Odingo, Z. Onyango, & A. de Geus (Eds.), Health and disease in Kenya (pp. 395–403). Nairobi, Kenya: East African Literature Bureau.Google Scholar
  33. Harrison, P. R., & Rahn, K. A. (1979). Atmospheric particulate ‘pollutants’. In F. R. Siegel (Ed.), Review of research on modern problems in geochemistry (pp. 177–206). Paris: UNESCO.Google Scholar
  34. Hedger, R. S., Howard, D. A., & Burdin, M. L. (1964). The occurrence in goats and sheep of a disease closely similar to swayback. Veterinary Record, 76, 493–497.Google Scholar
  35. Hochella, M. F. (1993). Surface chemistry, structure and reactivity of hazardous mineral dust. In G. D. Gutherie & B. T. Mossman (Eds.), Health effects of mineral dusts (pp. 275–308). Washington, DC: Mineralogical Society of America.Google Scholar
  36. Howard, D. A. (1970). The effects of copper and cobalt treatment on the weight gains and blood constituents of cattle in Kenya. Veterinary Record, 87, 771–774.CrossRefGoogle Scholar
  37. Hudson, J. R. (1944). Notes on animal diseases, 13: deficiency diseases. East African Agricultural Journal, 10, 51–55.Google Scholar
  38. Justin-Visentin, E., Nicoletti, M., Tolomeo, L., & Zanettin, B. (1974). Miocene and Pliocene volcanic rocks of the Addis Ababa-Debra Berhan area, geo-petrographic and radiometric study. Bulletin of Volcanology, 38, 237–253.CrossRefGoogle Scholar
  39. Kampunzu, A. B., & Mohr, P. (1991). Magmatic evolution and petrogenesis in the East African Rift System. In A. B. Kampunzu & R. T. Lubala (Eds.), Magmatism in extensional structural settings – The Phanerozoic African Plate (pp. 85–136). Berlin: Springer Verlag.Google Scholar
  40. Kloos, H., & Haimanot, R. T. (1999). Distribution of fluoride and fluorosis in Ethiopia and prospects for control. Tropical Medicine and International Health, 4(5), 355–364.CrossRefGoogle Scholar
  41. Mahaney, W. C., Milner, M. W., Hs, M., Hancock, R. G. V., Aufreiter, S., Reich, M., & Wink, M. (2000). Mineral and chemical analyses of soils eaten by humans in Indonesia. International Journal of Environmental Health Research, 10(2), 93–109.CrossRefGoogle Scholar
  42. Manji, F., Baelum, V., & Fejerskov, O. (1986). Dental fluorosis in an area of Kenya with 2 ppm fluoride in drinking water. Journal of Dental Research, 65, 659–662.Google Scholar
  43. Maskall, J. E., & Thornton, I. (1991). Trace element geochemistry of soils and plants in Kenyan conservation areas and implications for wildlife nutrition. Environmental Geochemistry and Health, 13, 93–107.CrossRefGoogle Scholar
  44. Maskall, J. E., & Thornton, I. (1992). Geochemistry and wildlife nutrition: Factors affecting trace element uptake from soils to plants. Trace Substances in Environmental Health, XXV, 217–232.Google Scholar
  45. McDowell, L. R. (1992). Cobalt. In L. R. McDowell (Ed.), Minerals in animal and human nutrition (pp. 205–223). New York: Academic Press.Google Scholar
  46. Microsoft Corporation. The Great Rift Valley in Africa. Retrieved 20 September 2007, from http://www.images.encarta.msn.com/.
  47. Mills, C. F. (1996). Geochemical aspects of the aetiology of trace element related diseases. In J. D. Appleton & G. J. H. McCall (Eds.), Environmental geochemistry and health, with special reference to developing Countries (pp. 1–5). London: Geological Society Special Publication, No. 13.Google Scholar
  48. Morland, G., Reimann, C., Strand, T., Skarphagen, H., Banks, D., Bjorvatn, K., Hall, G. E. M., & Sievers, U. (1997). The hydrogeochemistry of Norwegian bedrock groundwater – Selected parameters (pH, F, Rn, U, Th, B, Na, Ca) in samples from Vestfold and Hordaland, Norway. NGU Bulletin, 432, 103–117.Google Scholar
  49. Morley, C. K. (1999). Introduction to the East African Rift System. In C. K. Morley (Ed.), Geoscience of rift systems – Evolution of East Africa (pp. 1–18). Oklahoma: American Association of Petroleum Geologists.Google Scholar
  50. Nair, K. R., Manji, F., & Gitonga, J. N. (1984). The occurrence and distribution of fluoride in groundwaters of Kenya. East Africa Medical Journal, 61, 503–512.Google Scholar
  51. Nanyaro, J. T., Aswathanarayana, U., & Mungure, J. S. (1984). A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. Journal of African Earth Sciences, 2(2), 129–140.Google Scholar
  52. Nyandat, N. N., & Ochieng, P. N. (1976) Copper content and availability of arable and range areas of Kenya. East African Agricultural Journal, 42, 1–7.Google Scholar
  53. Ogola, J. S., Mitullah, W. V., & Omulo, M. A. (2002). Impact of gold mining on the environment and human health: A case study in the Migori gold belt, Kenya. Environmental Geochemistry and Health, 24, 141–158.CrossRefGoogle Scholar
  54. Perel’man, A. I. (1967). Geochemistry of epigenesis (266 pp). New York: Plenum Press.Google Scholar
  55. Pinkerton, A. (1967). Copper deficiency of wheat in the Rift Valley, Kenya. Journal of Soil Science, 18, 18–26.CrossRefGoogle Scholar
  56. Plant, J., Smith, D., Smith, B., & Williams, L. (2000). Environmental geochemistry at the global scale. Journal of the Geological Society of London, 157, 837–849.CrossRefGoogle Scholar
  57. Price, E. W. (1988). Non-filarial elephantiasis – Confirmed as a geochemical disease, and re-named podoconiosis. Ethiopian Medical Journal, 26, 151–153.Google Scholar
  58. Price, E. W. (1990). Podoconiosis, non-filarial elephantiasis (131 pp). Oxford University Press.Google Scholar
  59. Price, E. W., & Bailey, D. (1984). Environmental factors in the etiology of endemic elephantiasis of the lower legs in tropical Africa. Tropical and Geographical Medicine, 36, 1–5.Google Scholar
  60. Reedman, A. J. (1973). Geological Atlas of Uganda. Entebbe, Uganda: Uganda Geological Survey and Mines Department.Google Scholar
  61. Reimann, C., Bjorvatn, K., Bjørn, F., Melaku, Z., & Tekle-Haimanot, R. (2003). Drinking water quality in the Ethiopian section of the East African Rift Valley; I – Data and health aspects. The Science of the Total Environment, 311, 65–80.CrossRefGoogle Scholar
  62. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geologic Society of America Bulletin, 72, 175–191.CrossRefGoogle Scholar
  63. Underwood, E. J. (1981). The mineral nutrition of livestock (180 pp). London, England: Commonwealth Agricultural Bureau.Google Scholar
  64. UNICEF (United Nations Children’s Fund)/Republic of Kenya. (1992). Children and Women in Kenya: A situation analysis. Nairobi, Kenya.Google Scholar
  65. van Straaten, P. (2000). Human exposure to mercury due to small scale gold mining in northern Tanzania. The Science of the Total Environment, 259, 45–53.CrossRefGoogle Scholar
  66. Vinogradov, A. P. (1959). The geochemistry of rare and dispersed chemical elements in soil (2nd ed., 208 pp). New York: Consultants Bureau.Google Scholar
  67. Walvekar, S. V., & Qureshi, B. A. (1992). Endemic fluorosis and partial defluoridation of water supplies – A public health concern in Kenya. Community Dental and Oral Epidemiology, 10, 156–160.CrossRefGoogle Scholar
  68. Webb, J. S, Thornton, I., Howarth, R. J., Thompson, M., & Lowenstein, P. L. (1978). The Wolfson Geochemical Atlas of England and Wales. Oxford: Clarendon Press.Google Scholar
  69. WHO. (1993). Guidelines for drinking water quality. Geneva: World Health Organisation.Google Scholar
  70. WHO/UNICEF/ICCIDD. (1996). Recommended iodine levels in salt and guidelines for monitoring their adequacy and effectiveness. Nutrition Unit, Division of Food and Nutrition (10 pp). Geneva: WHO.Google Scholar
  71. Ziegler, J. L. (1994). Endemic Kaposi’s sarcoma in Africa and local volcanic soils. The Lancet, 342, 1348–1351.CrossRefGoogle Scholar
  72. Zinabu, G. M., & Pearce, N. J. G. (2003). Concentrations of heavy metals and related trace elements in some Ethiopian rift-valley lakes and their inflows. Hydrobiologia, 492, 17–178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Geology and Mining, Faculty of Natural SciencesUniversity of JosJosNigeria

Personalised recommendations