Advertisement

Environmental Geochemistry and Health

, Volume 30, Issue 2, pp 95–99 | Cite as

Evaluation of tests to assess the quality of mine-contaminated soils

  • P. AlvarengaEmail author
  • P. Palma
  • A. P. Gonçalves
  • R. M. Fernandes
  • A. de Varennes
  • G. Vallini
  • E. Duarte
  • A. C. Cunha-Queda
Short Communication

Abstract

An acid metal-contaminated soil from the Aljustrel mining area (a pyrite mine located in SW Portugal in the Iberian Pyrite Belt) was subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn). Water-soluble metals were determined and a sequential extraction procedure was used to investigate metal speciation. Two bioavailable metal fractions were determined: a mobile fraction and a mobilisable fraction. Soil ecotoxicity was studied using a battery of bioassays: plant growth test and seed germination with cress (Lepidium sativum L.), earthworm (Eisenia fetida) mortality, E. fetida avoidance behaviour, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilisation. Although the total content of Cu, Zn and Pb in the soil was large (362, 245 and 1,250 mg/kg dry matter, respectively), these metals were mostly structurally bound (87% for Cu, 81% for Zn and 89% for Pb) and, therefore, scarcely bioavailable. Nonetheless, the D. magna immobilization test using soil leachate showed an EC50 (48 h) of 36.3% (v/v), and the luminescent inhibition of V. fischeri presented an EC20 (15 min) of 45.2% and an EC20 (30 min) of 10.7% (v/v), suggesting a considerable toxic effect. In the direct exposure bioassays, E. fetida avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). At the same soil concentrations, cress showed negligible growth. The results suggest the need to use a battery of toxicity tests, in conjunction with chemical methods, in order to assess the quality of mine-contaminated soils correctly.

Keywords

Bioassays Bioavailability Metal-contaminated soil Single and sequential extraction procedures 

Notes

Acknowledgement

The authors would like to thank “Fundação para a Ciência e Tecnologia” for financial support through the Project POCI/AMB/57586/2004, with partial funding from the FEDER.

References

  1. ASTM E 1676–97 (1997). American Society for Testing and Materials. Standard guide for conducting laboratory soil toxicity or bioaccumulation tests with Lumbricid earthworm Eisenia fetida. In Annual Book of ASTM Standards (pp. 1056–1074). West Conshohoken, PA.Google Scholar
  2. Chaîneau, C. H., Yepremian, C., Vidalie, J. F., Ducreaux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted sol: Biodegradation, leaching and toxicity assessments. Water, Air and Soil Pollution, 144, 419–440.CrossRefGoogle Scholar
  3. Decreto-Lei no. 118/2006, de 21 de Junho. Diário da República no. 118/2006—I Série A. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Lisboa.Google Scholar
  4. DIN 38 414-S4 (1984). Determination of leachability by water (S4). German standard methods for the examination of water, wastewater and sludge. Sludge and sediments (group S).Google Scholar
  5. Fuentes, A., Lloréns, M., Sáez, J., Aguilar, M. I., Ortuño, J. F., & Meseguer, V. F. (2004). Phytotoxicity & heavy metals speciation of stabilized sewage sludges. Journal of Hazardous Materials, A108, 161–169.CrossRefGoogle Scholar
  6. Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. The Science of the Total Environment, 178, 11–20.CrossRefGoogle Scholar
  7. Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology, 11(7), 714–719. Correction (1978). 12(4), 417.CrossRefGoogle Scholar
  8. Hammer, D., & Keller, C. (2002). Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality, 31, 1561–1569.CrossRefGoogle Scholar
  9. Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & van der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. The Science of the Total Environment, 178, 21–28.CrossRefGoogle Scholar
  10. ISO 6341 (1996). Water quality—Determination of the inhibition of the mobility of Daphnia magna Staus (Cladocera, Crustacea)—acute toxicity test. International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  11. ISO 11348–2 (1998). Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). Part 2: Method using liquid-dried bacteria. International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  12. ISO 11466 (1995). Soil quality—Extraction of trace elements soluble in aqua regia. International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  13. ISO/CD (2003). Soil Quality—Avoidance test for testing the quality of soils and the toxicity of chemicals—Test with earthworms (Eisenia fetida). ISO 17512. International Organization for Standardization. (p. 26). Geneva, Switzerland.Google Scholar
  14. ISO/DIS 15 799 (1999). Soil Quality—Guidance on the ecotoxicological characterization of soils and soil materials. Annex A.1.2.2 Determination of the effects of pollutants on soil flora—Part 2: Effects of chemicals on the emergence and growth of higher plants. International Organisation for Standardisation. Geneva, Switzerland.Google Scholar
  15. Kennedy, V. H., Sanchez, A. L., Oughton, D. H., & Rowland, A. P. (1997). Use of single and sequential chemical extractants to assess radionuclide and heavy metals availability from soils to root uptake. Analyst, 122, 89R–100R.CrossRefGoogle Scholar
  16. Loureiro, S., Soares, A. M. V. M., & Nogueira, A. J. A. (2005a). Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environmental Pollution, 138, 121–131.CrossRefGoogle Scholar
  17. Loureiro, S., Ferreira, A. L. G., Soares, A. M. V. M., & Nogueira, A. J. A. (2005b). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168–177.CrossRefGoogle Scholar
  18. Pueyo, M., López-Sanchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.CrossRefGoogle Scholar
  19. Quevauviller, P., van der Sloot, H. A., Ure, A., Muntau, H., Gomez, A., & Rauret, G. (1996). Conclusions of the workshop: Harmonization of leaching/extraction tests for environmental risk assessment. The Science of the Total Environment, 178, 133–139.CrossRefGoogle Scholar
  20. Rauret, G., López-Sanchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, H., & Quevauviller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.CrossRefGoogle Scholar
  21. Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risck assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22(3), 152–159.CrossRefGoogle Scholar
  22. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer-Verlag.Google Scholar
  23. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  24. van Gestel, C. A. M., van der Waarde, J. J., Derksen, J. G. M., van der Hoek, E. E., Veul, M. F. X. W., Bouwens, S., Rusch, B., Kronenburg, R., & Stokman, G. N. M. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environmental Toxicology and Chemistry, 20(7), 1438–1449.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Alvarenga
    • 1
    Email author
  • P. Palma
    • 1
  • A. P. Gonçalves
    • 1
  • R. M. Fernandes
    • 1
  • A. de Varennes
    • 2
  • G. Vallini
    • 3
  • E. Duarte
    • 2
  • A. C. Cunha-Queda
    • 2
  1. 1.Departamento de Ciências do AmbienteEscola Superior Agrária de BejaBejaPortugal
  2. 2.Departamento de Química Agrícola e Ambiental, Instituto Superior de AgronomiaUniversidade Técnica de Lisboa (TULisbon)LisboaPortugal
  3. 3.Department of Science and Technology, Laboratories of Microbial Biotechnology and Environmental MicrobiologyUniversity of VeronaVeronaItaly

Personalised recommendations