Environmental Geochemistry and Health

, Volume 30, Issue 3, pp 219–229 | Cite as

Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil

Original Paper


We determined the amount of bioaccessible lead in samples of contaminated soils and in mining and refining wastes collected in the surroundings of a former smelter in a rural area in south-eastern Brazil. Previous studies showed that some resident children and adults had blood Pb levels above recommended limits, but the contamination route was not established. The incidental ingestion of contaminated soils and dusts is considered to be a major route of lead uptake by humans. Bioavailability of heavy metals like Pb depends on solubility during digestion. We used in vitro tests that simulate human gastrointestinal (GI) media to measure the amount of soluble Pb under such conditions. Pb in soil and solid waste samples ranged from 0.03 to 4.1% and 1.2 to 15%, respectively. On average, 70% of the lead content was soluble in three different simulated gastric solutions (pH 1.5 and 1.7). For the same samples, lead solubility decreased to 2–22% when the pH was raised to pH 7 to approximate conditions found in the small intestine. These results indicate that if soils and dusts of the area are ingested, most of the lead will dissolve in the stomach, and part of it will remain soluble in the duodenum, i.e., would be potentially available for absorption. These findings may explain the high blood Pb levels previously reported.


Lead Bioaccessibility Soils Wastes Bioavailability 



The authors acknowledge Brazilian agencies CAPES, CNPq, and FAPESP (Proc. Nr.2002/00271-0) financial support. We are grateful to Prof. Rômulo S. Angélica for providing X-ray diffraction data.


  1. ATSDR - Agency for Toxic Substances and Disease Registry (2000). Lead Toxicity. U.S. Department of Health and Human Services. ATSDR publication No: ATSDR-HE-CS-2001-0001. Retrieved October 20, 2006 from http://www.atsdr.cdc.gov/HEC/CSEM/lead/cover.html
  2. Bacon, J. R., Dinev, N., Stanislavova, L., Penkov, D., & Willeke-Wetstein, C. (2003). The route of transfer to the human population of lead from contaminated soil close to a smelter in Bulgaria. Journal of Physique IV, 107, 91–94.Google Scholar
  3. Bright, D. A., Richardson, G. M., & Dodd, M. (2006). Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil. Human Ecological Risk Assessment, 12, 591–605.CrossRefGoogle Scholar
  4. Brown, G. E., Foster, A. L., & Ostergren, J. D. (1999). Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proceedings of the National Academy of Science, USA, 96 , 3388–3395.CrossRefGoogle Scholar
  5. Calabrese, E. J., Stanek, E. J., James, R. C., & Roberts, S. M. (1999). Soil ingestion: a concern for acute toxicity in children. Journal of Environmental Health, 61, 1354–1358.Google Scholar
  6. Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty florida soils. Soil Science Society of America Journal, 65, 491–499.CrossRefGoogle Scholar
  7. Cunha, F. G. (2003). Human and environmental lead contamination in Ribeira River Valley, São Paulo and Paraná States. Doctorate thesis, Universidade Estadual de Campinas, Brazil.Google Scholar
  8. Davis, A., Drexler, J. W., Ruby, M. V., & Nicholson, A. (1993). Micromineralogy of mine waste in relation to lead bioavailability, Butte, Montana. Environmental Science and Technology, 27, 1415–1425.CrossRefGoogle Scholar
  9. Davis, A., Ruby, M. V., Goad, P., Eberle, S., & Chryssoulis, S. (1997). Mass balance on surface-bound, mineralogic, and total lead concentrations as related to industrial aggregate bioaccessibility. Environmental Science and Technology, 31, 37–44.CrossRefGoogle Scholar
  10. Dressman, J. B., Berardi, R. R., Dermentzoglou, L. C., Russell, T. L., Schmaltz, S. P., Barnett, J. L., & Jarvenpaa, K. M. (1990). Upper Gastrointestinal (GI) pH in young, healthy men and women. Pharmacological Research, 7, 756–761.CrossRefGoogle Scholar
  11. Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckeley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of the Environmental Contamination Toxicology, 40, 128–135.CrossRefGoogle Scholar
  12. Enzweiler, J., & Vendemiatto, M. A. (2004). Analysis of sediments and soils by X-ray fluorescence spectrometry using matrix corrections based on fundamental parameters. Geostandards Newsletter, The Journal of Geostandards and Geoanalysis, 28, 103–112.CrossRefGoogle Scholar
  13. Eysink, G. G. J., de Pádua H. B, Piva-Bertoletti, S. A. E., Martins, C. D., & Pereira, D. N. (1988). Metais pesados no Vale do Ribeira e em Iguape-Cananéia. Ambiente, 2, 6–13.Google Scholar
  14. Freeman, G. B., Johnson, J D., Killinger, J. M., Liao, S. C., Feder, P. I., Davis, A. O., Ruby, M. V., Chamey, R. L., Lovre, S. C., & Bergstron, P. D. (1992). Relative bioavailability of lead from mining waste soil in rats. Fundamental and Applied Toxicology, 19, 388–398.CrossRefGoogle Scholar
  15. Freeman, G. B., Schoof, R. A., Ruby, M. V., Davis, A. O., Dill, J. A., Liao, S. C., Lapin, C. A., & Bergstrom, P. D. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundamental and Applied Toxicology, 28, 215–222.CrossRefGoogle Scholar
  16. Gasser, U. G., Walker, W. J., Dahlgren, R. A., Borch, R. S., & Burau, R. G. (1996). Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation. Environmental Science and Technology, 30, 761–769.CrossRefGoogle Scholar
  17. Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soil for different liquid to solid ratios in synthetic fluid. Environmental Science Technology, 32, 358–362.CrossRefGoogle Scholar
  18. Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 23, 78–93.CrossRefGoogle Scholar
  19. Hong, S., Candelone, J. P., Patterson, C. C., & Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843.CrossRefGoogle Scholar
  20. LaGoy, P. K. (1987). Estimated soil ingestion rates for use in risk assessment. Risk Analysis, 7, 355–359.CrossRefGoogle Scholar
  21. Lammoglia, T., Figueiredo, B. R., Sakuma, A. M., Buzzo, M. L., Okada, I. A., & Kira, C. S. (2005, October) Ocorrência de chumbo em alimentos e solos no alto vale do Ribeira. (Paper presented at the X Congresso Brasileiro de Geoquímica e II Simpósio de Geoquímica dos Países do Mercosul. Porto de Galinhas, Brazil).Google Scholar
  22. Link, T. E., Ruby, M. V., Davis, A., & Nicholson, A. D. (1994) Soil lead mineralogy by microprobe: An interlaboratory comparison. Environmental Science and Technology, 28, 985–988.CrossRefGoogle Scholar
  23. Maddaloni, M., Lolacono, N., Manton, W., Blum, C., Drexler, J., & Graziano, J. (1998). Bioavailability of soilborne lead in adults, by stable isotope dilution. Environmental Health Perspective, 106, 1589–1594.Google Scholar
  24. Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40, 2812–2818.CrossRefGoogle Scholar
  25. O’Flaherty, E.J. (1993). Physiologically based models for boneseeking elements IV. Kinetics of lead disposition in humans. Toxicology and Applied Pharmacology, 118, 16–29.CrossRefGoogle Scholar
  26. Oliver, D. P., McLaughlin, M. J., Naidu, R., Smith, L. H., Maynard, E. J., & Calder, I. C. (1999). Measuring Pb bioavailability from household dusts using an in vitro model. Environmental Science and Technology, 33, 4434–4439.CrossRefGoogle Scholar
  27. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, S. C., Schoeters, G., Verstraete, W., Van de Wiele, T., Wragg, J., Rompelberg, C. J. M., Sips, A., & Van Wijnen, J. H. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.CrossRefGoogle Scholar
  28. Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003a). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminant. Archives of Environmental Contamination and Toxicology, 44, 281–287.CrossRefGoogle Scholar
  29. Oomen, A. G., Tolls, J., Sips, A. J. A. M., & Groten, J. P. (2003b) In vitro intestinal lead uptake and transport in relation to speciation. Archives of Environmental Contamination Toxicology, 44, 116–124.CrossRefGoogle Scholar
  30. Oomen, A. G., Tolls, J., Sips, A. J. A. M., & Van den Hoop, M. A. G. T. (2003c). Lead speciation in artificial human digestive fluid. Archives of Environmental Contamination Toxicology, 44, 107–115.CrossRefGoogle Scholar
  31. Paoliello, M. M. B., & De Capitani, E. M. (2005). Environmental contamination and human exposure to lead in Brazil. Reviews of Environmental Contamination and Toxicology, 184, 59–96.CrossRefGoogle Scholar
  32. Paoliello, M. M. B., De Capitani, E. M., Cunha, F. G. A., Matsuo, T., Carvalho, M. D., Sakuma, A., & Figueiredo, B. R. (2002). Exposure of children to lead and cadmium from a mining area of Brazil. Environmental Research, 88, 120–128.CrossRefGoogle Scholar
  33. Paoliello, M. M. B., De Capitani, E. M., Cunha, F. G. A., Carvalho, M. D., Matsuo, T., Sakuma, A., & Figueiredo, B. R. (2003). Determinants of blood lead levels in an adult population from a mining area in Brazil. Journal of Physique IV, 107, 127–130.CrossRefGoogle Scholar
  34. Porter, S. K., Scheckel, K. G., Impelliterri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: Thermodinamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Critical Reviews in Environmental Science and Technology, 34, 495–604.CrossRefGoogle Scholar
  35. Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., & Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science Technology, 27, 2870–2877.CrossRefGoogle Scholar
  36. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science Technology, 30, 422–430.CrossRefGoogle Scholar
  37. Ruby, M. V., Schoof, R., Brattin, W.,Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., Edwards, D, Cragin, D. & Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science Technology, 33, 3697–3705.CrossRefGoogle Scholar
  38. Schroder, J. L., Basta, N. T., Casteel, S. W., Evans, T. J., Payton, M. E., & Si, J. (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. Journal of the Environmental Quality, 33, 513–521.CrossRefGoogle Scholar
  39. Thatcher, T. L., & Layton, D.W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.CrossRefGoogle Scholar
  40. U.S. Environmental Protection Agency (2002). User´s guide for the integrated exposure uptake biokinetic model for lead in children (IEUBK). EPA 540-K-01–005. Washington, DC. Retrieved August 20, 2006 from http://www.epa.gov/superfund/lead/products/ugieubk32.pdf
  41. WHO - World Health Organization. (1995). Inorganic Lead. Geneva: IPCS – International Programme on Chemical Safety. Environmental Health Criteria, 165.Google Scholar
  42. Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003). Factors controlling the bioaccessibility of arsenic(V) and lead(II) in soil. Soil and Sediment Contamination, 12, 165–173.CrossRefGoogle Scholar
  43. Yu, C. H., Yiin, L. M., & Lioy, P. J. (2006). The bioaccessibility of lead (Pb) from vacuumed house dust on carpets in urban residences. Risk Analysis, 26, 125–134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Geology and Natural Resources, Institute of GeosciencesState University of CampinasCampinasBrazil

Personalised recommendations