Environmental Geochemistry and Health

, Volume 28, Issue 3, pp 243–255 | Cite as

Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco, Guerrero, southern Mexico

  • Oscar Talavera MendozaEmail author
  • Ma. Aurora Armienta Hernández
  • José García Abundis
  • Nestor Flores Mundo


Leachates from the El Fraile tailings impoundment (Taxco, Mexico) were monitored every 2 months from October 2001 to August 2002 to assess the geochemical characteristics. These leachates are of interest because they are sometimes used as alternative sources of domestic water. Alternatively, they drain into the Cacalotenango creek and may represent a major source of metal contamination of surface water and sediments. Most El Fraile leachates show characteristics of Ca–SO4, (Ca+Mg)–SO4, Mg–SO4 and Ca–(SO4+HCO3) water types and are near-neutral (pH=6.3–7.7). Some acid leachates are generated by the interaction of meteoric water with tailings during rainfall events (pH=2.4–2.5). These contain variable levels of SO4 2− (280–29,500 mg l−1) and As (<0.01–12.0 mg l−1) as well as Fe (0.025–2352 mg l−1), Mn (0.1–732 mg l−1), Zn (<0.025–1465 mg l−1) and Pb (<0.01–0.351 mg l−1). Most samples show the highest metal enrichment during the dry seasons. Leachates used as domestic water typically exceed the Mexican Drinking Water Guidelines for sulfate, hardness, Fe, Mn, Pb and As, while acidic leachates exceed the Mexican Guidelines for Industrial Discharge Waters for pH, Cu, Cd and As. Speciation shows that in near-neutral solutions, metals exist mainly as free ions, sulfates and bicarbonates, while in acidic leachates they are present as sulfates and free ions. Arsenic appears as As(V) in all samples. Thermodynamic and mineralogical evidence indicates that precipitation of Fe oxides and oxyhydroxides, clay minerals and jarosite as well as sorption by these minerals are the main processes controlling leachate chemistry. These processes occur mainly after neutralization by interaction with bedrock and equilibration with atmospheric oxygen.


Acid mine drainage Arsenic Fe oxyhydroxides Heavy metals Mexico Leachates Speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



OTM is very grateful to Elvia Díaz V. for invaluable help and encouragement along all stages of the research. We thank Raina Maier for useful comments and English assistance. Critical comments and suggestions by two anonymous reviewers greatly helped to improve the manuscript, This research was founded by a CONACyT (Consejo Nacional de Ciencia y Tecnología) grant (G28975T).


  1. Armienta M.A., Talavera O., Morton O., Barrera M. 2003, Geochemistry of metals from mine tailings in Taxco. Mexico Bull Environ Contam Toxicol 71:387–393CrossRefGoogle Scholar
  2. Armienta MA, Talarera O, Villaseñor G, Espinosa E, Pérex-Martínez I, Cruz O, Ceniceras N, Agnayo A. 2004, Environmental behaviour of metals from tailings in shallow rivers : Taxco, central Mexico. Appl Earth Sci (Trans Inst Min Metal B) 113, B76–B82Google Scholar
  3. Bahena-Pita, N. 2003, Evaluación de la calidad del agua de uso doméstico en Taxco el Viejo, Guerrero. BSc thesis, Universidad Autónoma de Guerrero, MexicoGoogle Scholar
  4. Ball JW, Nordstrom DK. 1991, User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geological Survey file report, pp 91–183. Google Scholar
  5. Bowell R.J. 1994, Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9: 279–286CrossRefGoogle Scholar
  6. Campa U.M.F., Ramírez E.J. 1979, La evolución geológica y la metalogénesis del noroccidente de Guerrero Serie Técnico-Científica. Universidad Autónoma de Guerrero 1:101Google Scholar
  7. Castrode Dios M. 2001, Caracterización químico-mineralógica de los sedimentos de los ríos Taxco y Cacalotenango en la región minera de Taxco de Alarcón, Guerrero. BSc thesis, Universidad Autónoma de Guerrero, MéxicoGoogle Scholar
  8. Consejo de Recursos Minerales (CRM) 1999, Monografía Geológico-Minera del estado de Guerrero. CRM, MéxicoGoogle Scholar
  9. Dold B. 1999, Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting – Implications for acid mine drainage and element mobility Terre Environ 18: 230 Google Scholar
  10. Dold B., Fontboté L. 2002, A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe Oxide Cu-Au deposits from The Punta del Cobre Belt, Northern Chile. Chem Geol 189: 135–163CrossRefGoogle Scholar
  11. Drever J.I. 1997, The geochemistry of natural waters: surface and groundwater environments. Prentice Hall, New JerseyGoogle Scholar
  12. Flores-Mundo N. 2002, Caracterización químico-mineralógica de los Jales El Fraile, Taxco de Alarcón. BSc thesis, Universidad Autónoma de Guerrero, MexicoGoogle Scholar
  13. Förstner U. 1983, Metal transfer between solid and aqueous phases In: Förstner U, Wittmann GTW (eds). Metal pollution in the aquatic environment, 2nd edn. Springer, Berlin Heidelberg New York, pp 197–270Google Scholar
  14. Hochella M.F., Moore J.N., Golla U., Putnis A. 1999, A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport. Geochim Cosmochim Acta 63: 3395–3406CrossRefGoogle Scholar
  15. Hudson-Edwards K.A. 2003, Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Miner Mag 67: 205–217CrossRefGoogle Scholar
  16. Jambor J.L., Owens D.R. 1993, Mineralogy of the tailings impoundment at the former edge of Sudbury Structure, Ontario. CANMET Div. Rep. MSL93-4 (CF), Department of Energy and Mine Research, CanadaGoogle Scholar
  17. Johnson C.A. 1986, The regulation of trace element concentrations in river and estuarine waters contaminated with acid mine drainage – the adsorption of Cu and Zn on amorphous Fe oxyhydroxides. Geochim Cosmochim Acta 50:2433–2438 CrossRefGoogle Scholar
  18. Langmuir D. 1997, Aqueous environmental geochemistry. Prentice Hall, New JerseyGoogle Scholar
  19. Lee C.H. 2003, Assessment of contamination load on water, soil and sediment affected by the Kongjujeil mine drainage, Republic of Korea. Environ Geol 44: 501–515CrossRefGoogle Scholar
  20. Lee C.H., Lee H.K. 2001, Hydrochemical monitoring and heavy metal contaminations at the Narim Mine Creek in the Sulcheon District, Republic of Korea. Environ Geochem Health 23: 347–372CrossRefGoogle Scholar
  21. Lee G., Bigham J.M., Faure G. 2002, Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District. Tenn. Appl. Geochem 17:569–581CrossRefGoogle Scholar
  22. Nordstrom DK. 1982, Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Kittrick JA, Fanning DS, Hossner LR, eds. Acid Sulphate Weathering. Soil Science Society of America, Special Publ. 10: 37–56Google Scholar
  23. Parkhurst DL. 1995, User’s guide to Phreeqc – A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey, USAGoogle Scholar
  24. Peacey V., Yanful E.K. 2003, Metal mine tailings and sludge co-deposition in a tailings pond water. Air Soil Pollut 145:307–339CrossRefGoogle Scholar
  25. Ritcey G.M. 1989, Tailings management: problems and solutions in the mining industry. Elsevier, AmsterdamGoogle Scholar
  26. Talavera  Mendoza O., Yta M., Moreno-Tovar R., Dótor-Almazán A., Flores-Mundo N., Duarte-Gutiérrez C.: 2005, Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofisica Int 44:49–64Google Scholar
  27. Woo N.C., Choi M.J., Lee K.S. 2002, Assessment of groundwater quality and contamination from uranium-bearing black shale in Goesan-Boeun areas. Korea Environ Geochem Health 24: 261–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Oscar Talavera Mendoza
    • 1
    Email author
  • Ma. Aurora Armienta Hernández
    • 2
  • José García Abundis
    • 1
  • Nestor Flores Mundo
    • 1
  1. 1.Unidad Académica Ciencias de la TierraUniversidad Autónoma de GuerreroTaxcoMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico D. F.Mexico

Personalised recommendations