Advertisement

Fine scale structure of convective mixed layer in ice-covered lake

  • Sergey Volkov
  • Sergey Bogdanov
  • Roman Zdorovennov
  • Galina Zdorovennova
  • Arkady Terzhevik
  • Nicolay Palshin
  • Damien Bouffard
  • Georgiy Kirillin
Original Article
  • 59 Downloads

Abstract

Nonstationary convection forced by distributed buoyancy sources is a fundamental environmental fluid mechanics process, particularly in ice-covered freshwater waterbodies. In this paper, we present novel field-based results that characterise the diurnal evolution of the main energetics of radiatively-driven convection in ice-covered lakes that is the radiatively-induced buoyancy flux, B, and the kinetic energy dissipation rate, \(\varepsilon\). To estimate the spatiotemporal distribution of \(\varepsilon\), we applied scale similarity of the velocity structure functions to identify the fine turbulence scales from high-frequency velocity measurements. The field study was carried out at Lake Vendyurskoe, Russia, in April 2016. Small-scale velocity fluctuations were measured using acoustic Doppler current profiler in a 2 m layer beneath the ice cover. The method was proven to be valid for low-energy convection without mean shear. The inertial subrange, covering order of magnitude in the spatial domain, was identified by fitting the \(^2/_3\) scaling power law to the structure function method, thus confirming the regime of fully developed turbulence. The calculated rate of dissipation of turbulent kinetic energy \(\varepsilon\) reaches values up to \(3 \times 10^{-9} \hbox { m}^{2}\hbox {s}^{-3}\). Although a strong correlation between \(\varepsilon\) and B was observed, \(\varepsilon\) picks up about 1 h later after the onset of the heating-phase. This delay roughly corresponds to the turnover time of the energy containing eddies. We finally observed a decay of \(\varepsilon\) at night, during the relaxation-phase, but, interestingly, the level remained above the statistical error.

Keywords

Convection Velocity structure function Inertial subrange Dissipation rate Acoustic Doppler profiling 

Notes

Acknowledgements

The present study is a part of the Russian Foundation for Basic Research RFBR, projects 16-05-00436_a and 18-05-60291. GK was supported by the German Research Foundation (DFG Project “IceBound” KI-853/11-1). DB was supported by the FEEL Foundation, Fondation pour l’Etude des Eaux du Léman.

References

  1. 1.
    Bouffard D, Boegman L (2013) A diapycnal diffusivity model for stratified environmental flows. Dyn Atmos Ocean 61–62:14–34CrossRefGoogle Scholar
  2. 2.
    Bouffard D, Zdorovennov R, Zdorovennova G, Pasche N, Wüest A, Terzhevik A (2016) Ice-covered Lake Onega: effects of radiation on convection and internal waves. Hydrobiologia 780(1):22–36.  https://doi.org/10.1007/s10750-016-2915-3 CrossRefGoogle Scholar
  3. 3.
    Chasnov J, Tse K (2001) Turbulent penetrative convection with an internal heat source. Fluid Dyn Res 28:397–421.  https://doi.org/10.1016/S0169-5983(00)00037-X CrossRefGoogle Scholar
  4. 4.
    Deardorff JW (1970a) Convective velocity and temperature scales for the unstable planetary boundary layer and for rayleigh convection. J Atmos Sci 27(8):1211–1213.  https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2
  5. 5.
    Deardorff JW (1970b) Preliminary results from numerical integrations of the unstable planetary boundary layer. J Atmos Sci 27(8):1209–1211.  https://doi.org/10.1175/1520-0469(1970)027<1209:PRFNIO>2.0.CO;2
  6. 6.
    Farmer DM (1975) Penetrative convection in the absence of mean shear. Q J R Meteorol Soc 101(430):869–891.  https://doi.org/10.1002/qj.49710143011 CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Jonas T, Terzhevik AY, Mironov DV, Wüest A (2003) Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. J Geophys Res Oceans 108(C6).  https://doi.org/10.1029/2002JC001316, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JC001316
  10. 10.
    Kadanoff LP (2001) Turbulent heat flow: structures and scaling. Phys Today 54(8):34–39.  https://doi.org/10.1063/1.1404847 CrossRefGoogle Scholar
  11. 11.
    Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y, Caughey SJ, Readings CJ (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33(11):2152–2169.  https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
  12. 12.
    Kirillin G, Aslamov I, Leppäranta M, Lindgren E (2018) Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations. Hydrol Earth Syst Sci Discuss, pp 1–22.  https://doi.org/10.5194/hess-2018-376, https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-376/
  13. 13.
    Kirillin GB, Forrest AL, Graves KE, Fischer A, Engelhardt C, Laval BE (2015) Axisymmetric circulation driven by marginal heating in ice-covered lakes. Geophys Res Lett 42(8):2893–2900.  https://doi.org/10.1002/2014GL062180 CrossRefGoogle Scholar
  14. 14.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Math Phys Sci 434(1890). http://www.jstor.org/stable/51980
  15. 15.
    Lenschow DH, Stephens PL (1980) The role of thermals in the convective boundary layer. Boundary Layer Meteorol 19(4):509–532.  https://doi.org/10.1007/BF00122351 CrossRefGoogle Scholar
  16. 16.
    Lhermitte R, Serafin R (1984) Pulse-to-pulse coherent doppler sonar signal processing techniques. J Atmos Ocean Technol 1(4):293–308.  https://doi.org/10.1175/1520-0426(1984)001<0293:PTPCDS>2.0.CO;2
  17. 17.
    Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atmos Sci 40(3):749–761.  https://doi.org/10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2
  18. 18.
    Lohse D, Xia KQ (2010) Small-scale properties of turbulent Rayleigh-Bénard convection. Ann Rev Fluid Mech 42(1):335–364.  https://doi.org/10.1146/annurev.fluid.010908.165152 CrossRefGoogle Scholar
  19. 19.
    Lombardo CP, Gregg MC (1989) Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J Geophysl Res Oceans 94(C5):6273–6284.  https://doi.org/10.1029/JC094iC05p06273 CrossRefGoogle Scholar
  20. 20.
    Lorke A, Wüest A (2005) Application of coherent ADCP for turbulence measurements in the bottom boundary layer. J Atmos Oceanic Technol 22(11):1821–1828.  https://doi.org/10.1175/JTECH1813.1 CrossRefGoogle Scholar
  21. 21.
    Mironov D, Terzhevik A, Kirillin G, Jonas T, Malm J, Farmer D (2002) Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J Geophys Res Oceans 107(C4):7–1–7–16.  https://doi.org/10.1029/2001JC000892
  22. 22.
    Monin AS, Yaglom AM (2013) Statistical fluid mechanics, Volume II: mechanics of turbulence. courier corporationGoogle Scholar
  23. 23.
    Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43(6):532–546.  https://doi.org/10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2
  24. 24.
    Obukhov AM, Yaglom AM (1959) On the microstructure of atmospheric turbulence: a review of recent work in the USSR. Q J R Meteorol Soc 85(364):81–90.  https://doi.org/10.1002/qj.49708536402 CrossRefGoogle Scholar
  25. 25.
    Pandey A, Scheel JD, Schumacher J (2018) Turbulent superstructures in Rayleigh-Bénard convection. Nat Commun 9(1):2118.  https://doi.org/10.1038/s41467-018-04478-0 CrossRefGoogle Scholar
  26. 26.
    Shay TJ, Gregg MC (1986) Convectively driven turbulent mixing in the upper ocean. J Phys Oceanogr 16(11):1777–1798.  https://doi.org/10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2
  27. 27.
    Sreenivasan KR (1995) On the universality of the Kolmogorov constant. Phys Fluids 7(11):2778–2784.  https://doi.org/10.1063/1.868656 CrossRefGoogle Scholar
  28. 28.
    Straus M (1976) Penetrative convection in a layer of fluid heated from within. Astrophys J 209:179–189.  https://doi.org/10.1086/154707 CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Ulloa HN, Wüest A, Bouffard D (2018) Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody. J Fluid Mech 852:R1.  https://doi.org/10.1017/jfm.2018.587 CrossRefGoogle Scholar
  31. 31.
    Wiles PJ, Rippeth TP, Simpson JH, Hendricks PJ (2006) A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys Res Lett 33(L21608),  https://doi.org/10.1029/2006GL027050
  32. 32.
    Zdorovennov R, Palshin N, Zdorovennova G, Efremova T, Terzhevik A (2013) Interannual variability of ice and snow cover of a small shallow lake. Estonian J Earth Sci 62(1):26–32.  https://doi.org/10.3176/earth.2013.03 CrossRefGoogle Scholar
  33. 33.
    Zdorovennov R, Gavrilenko G, Zdorovennova G, Palshin N, Efremova T, Golosov S, Terzhevik A (2016) Optical properties of lake Vendyurskoe. Geogr Environ Sustain 9(3):74–87.  https://doi.org/10.15356/2071-9388_03v09_2016_05 CrossRefGoogle Scholar
  34. 34.
    Zilitinkevich S (1991) Turbulent penetrative convection. Avebury Technical, AldershotGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Northern Water Problems InstituteKarelian Research Center, Russian Academy of Sciences (NWPI KarRC RAS)PetrozavodskRussian Federation
  2. 2.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  3. 3.Department of EcohydrologyLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany

Personalised recommendations