Advertisement

Hydrodynamic modeling of Edmonton storm-water ponds

  • Nader Nakhaei
  • Leon Boegman
  • Mahyar Mehdizadeh
  • Mark Loewen
Original Article
  • 84 Downloads

Abstract

Computational models often are applied to simulate water quality for management of natural and constructed aquatic systems. As part of a larger study, a three-dimensional hydrodynamic and biogeochemical model was applied to three storm-water ponds in the City of Edmonton to examine relations between nutrients and eutrophication. This paper reports on the calibration and validation procedure of the hydrodynamic component of the model suite. It was found that correcting surface heat fluxes for atmospheric instability (defined as the difference between air and water temperature) led to greater latent and sensible heat loss (up to ~ 32% and ~ 34%, respectively) and resulted in the most accurate simulation of observed temperature time series (root-mean-square error, RMSE < 3.03 °C). The calibration also involved tuning of albedo and light attenuation coefficients, which were optimized by applying a global sensitivity analysis tool that showed the model was more sensitive to albedo. Global sensitivity analysis, can be applied to develop a resulting limited area, which is shown to be a valuable tool to optimize the calibration process.

Keywords

ELCOM Atmospheric instability Storm-water ponds Sensitivity analysis 

Notes

Acknowledgements

This research was funded through a Natural Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Development Grant to M. Loewen (PI), L. Boegman, E. Davies and Y. She, the City of Edmonton, Queen’s University and the Ontario Graduate Scholarship (OGS) program. The authors gratefully acknowledge J. Kemp for his help with the field measurements.

References

  1. 1.
    Babin J, Prepas EE, Murphy TP, Hamilton HR (1989) A test of the effects of lime on algal biomass and total phosphorus concentrations in Edmonton stormwater retention lakes. Lake Reserv Manag 5(1):129–135.  https://doi.org/10.1080/07438148909354689 CrossRefGoogle Scholar
  2. 2.
    Boegman L, Loewen MR, Hamblin PF, Culver DA (2008) Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnol Oceanogr 53(3):1093–1110.  https://doi.org/10.4319/lo.2008.53.3.1093 CrossRefGoogle Scholar
  3. 3.
    Brown R (1984) Relationships between suspended solids, turbidity, light attenuation, and algal productivity. Lake Reserv Manag 1(1):198–205.  https://doi.org/10.1080/07438148409354510 CrossRefGoogle Scholar
  4. 4.
    Chung SW, Hipsey MR, Imberger J (2009) Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environ Model Softw 24(12):1467–1482.  https://doi.org/10.1016/j.envsoft.2009.05.016 CrossRefGoogle Scholar
  5. 5.
    City of Edmonton (2012) Design and construction standards, vol 3. Drainage, EdmontonGoogle Scholar
  6. 6.
    City of Edmonton (2015) Stormwater lakes. Open Data Catalogue, EdmontonGoogle Scholar
  7. 7.
    Comings KJ, Booth DB, Horner RR (2000) Storm water pollutant removal by two wet ponds in Bellevue, Washington. J Environ Eng 126(4):321–330.  https://doi.org/10.1061/(ASCE)0733-9372(2000)126:4(321) CrossRefGoogle Scholar
  8. 8.
    Derecki JA (1981) Stability effects on Great Lakes evaporation. J Great Lakes Res 7(4):357–362.  https://doi.org/10.1016/S0380-1330(81)72064-1 CrossRefGoogle Scholar
  9. 9.
    Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929.  https://doi.org/10.1126/science.1156401 CrossRefGoogle Scholar
  10. 10.
    German J, Svensson G, Gustafsson LG, Vikström M (2003) Modelling of temperature effects on removal efficiency and dissolved oxygen concentrations in stormwater ponds. Water Sci Technol 48(9):145–154CrossRefGoogle Scholar
  11. 11.
    Gratziou M, Kopasakis K, Chalatsi M (2016) Study of the hydrodynamic characteristics of a Mediterranean stabilization ponds system using a 3D hydrodynamic model. Eur Water 53:55–70Google Scholar
  12. 12.
    Haghseresht F, Wang S, Do DD (2009) A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl Clay Sci 46(4):369–375.  https://doi.org/10.1016/j.clay.2009.09.009 CrossRefGoogle Scholar
  13. 13.
    Hayashi M, van der Kamp G (2007) Water level changes in ponds and lakes: the hydrological processes. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Academic Press, San Diego, pp 311–339CrossRefGoogle Scholar
  14. 14.
    Heupel MR, Reiss KL, Yeiser BG, Simpfendorfer CA (2008) Effects of biofouling on performance of moored data logging acoustic receivers. Limnol Oceanogr Methods 6(7):327–335.  https://doi.org/10.4319/lom.2008.6.327 CrossRefGoogle Scholar
  15. 15.
    Hicks BB (1975) A procedure for the formulation of bulk transfer coefficients over water. Bound-Layer Meteorol 8(3):515–524CrossRefGoogle Scholar
  16. 16.
    Hipsey MR, Antenucci JP, Brookes JD, Burch MD, Regel RH, Linden L (2004) A three dimensional model of cryptosporidium dynamics in lakes and reservoirs: a new tool for risk management. Int J River Basin Manag 2(3):181–197.  https://doi.org/10.1080/15715124.2004.9635231 CrossRefGoogle Scholar
  17. 17.
    Hodges B, Dallimore C (2012) Estuary, lake and coastal ocean model: ELCOM v2.2 science manual. Centre for Water Research, University of Western Australia, CrawleyGoogle Scholar
  18. 18.
    Hodges BR (2000) Numerical techniques in CWR-ELCOM. Technical report, Centre for Water Research, University of Western Australia, Nedlands, Western Australia, 6907. Reference no. WP 1422-BHGoogle Scholar
  19. 19.
    Huang A, Rao YR, Lu Y, Zhao J (2010) Hydrodynamic modeling of Lake Ontario: an intercomparison of three models. J Geophys Res Oceans.  https://doi.org/10.1029/2010JC006269 Google Scholar
  20. 20.
    Hvitved-Jacobsen T, Yousef YA (1988) Analysis of rainfall series in the design of urban drainage control systems. Water Res 22(4):491–496.  https://doi.org/10.1016/0043-1354(88)90045-0 CrossRefGoogle Scholar
  21. 21.
    Imberger J, Patterson JC (1989) Physical limnology. Adv Appl Mech 27:303–475.  https://doi.org/10.1016/S0065-2156(08)70199-6 CrossRefGoogle Scholar
  22. 22.
    Katsaros KB (1998) Turbulent flux of water vapor in relation to the wave field and atmospheric stratification. In: Imberger J (ed) Physical processes in lakes and oceans. American Geophysical Union, Washington, DC, pp 37–46.  https://doi.org/10.1029/CE054p0037 CrossRefGoogle Scholar
  23. 23.
    Kerr A, Cowling MJ, Beveridge CM, Smith MJ, Parr ACS, Head RM, Davenport J, Hodgkiess T (1998) The early stages of marine biofouling and its effect on two types of optical sensors. Environ Int 24(3):331–343.  https://doi.org/10.1016/S0160-4120(98)00011-7 CrossRefGoogle Scholar
  24. 24.
    Laird NF, Kristovich DA (2002) Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns. J Hydrometeorol 3(1):3–12.  https://doi.org/10.1175/1525-7541(2002)003%3c0003:VOSALH%3e2.0.CO;2 CrossRefGoogle Scholar
  25. 25.
    Laval B, Imberger J, Hodges BR, Stocker R (2003) Modeling circulation in lakes: spatial and temporal variations. Limnol Oceanogr 48(3):983–994.  https://doi.org/10.4319/lo.2003.48.3.0983 CrossRefGoogle Scholar
  26. 26.
    Lee H, Chung S, Ryu I, Choi J (2013) Three-dimensional modeling of thermal stratification of a deep and dendritic reservoir using ELCOM model. J Hydro-Environ Res 7(2):124–133.  https://doi.org/10.1016/j.jher.2012.10.002 CrossRefGoogle Scholar
  27. 27.
    León LF, Imberger J, Smith RE, Hecky RE, Lam DC, Schertzer WM (2005) Modeling as a tool for nutrient management in Lake Erie: a hydrodynamics study. J Great Lakes Res 31:309–318.  https://doi.org/10.1016/S0380-1330(05)70323-3 CrossRefGoogle Scholar
  28. 28.
    Lewitus AJ, Brock LM, Burke MK, DeMattio KA, Wilde SB (2008) Lagoonal stormwater detention ponds as promoters of harmful algal blooms and eutrophication along the South Carolina coast. Harmful Algae 8(1):60–65.  https://doi.org/10.1016/j.hal.2008.08.012 CrossRefGoogle Scholar
  29. 29.
    Liu D, Keesing JK, Xing Q, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58(6):888–895.  https://doi.org/10.1016/j.marpolbul.2009.01.013 CrossRefGoogle Scholar
  30. 30.
    Liu Y, Tian K, Winks A (2009b) Phoslock®: an effective technology for effective dissolved phosphorus removal in extensive water bodies under a wide range of chemical conditions. In: Paper presented at 3rd international conference on bioinformatics and biomedical engineering (ICBBE 2009), IEEE, Beijing, ChinaGoogle Scholar
  31. 31.
    Marsalek J (2003) Road salts in urban stormwater: an emerging issue in stormwater management in cold climates. Water Sci Technol 48(9):61–70CrossRefGoogle Scholar
  32. 32.
    Melching CS, Yoon CG (1996) Key sources of uncertainty in QUAL2E model of Passaic river. J Water Resour Plan Manag 122(2):105–113.  https://doi.org/10.1061/(ASCE)0733-9496(1996)122:2(105) CrossRefGoogle Scholar
  33. 33.
    Mishra S, Deeds N, Ruskauff G (2009) Global sensitivity analysis techniques for probabilistic ground water modeling. Groundwater 47(5):727–744.  https://doi.org/10.1111/j.1745-6584.2009.00604.x CrossRefGoogle Scholar
  34. 34.
    Missaghi S, Hondzo M, Melching C (2013) Three-dimensional lake water quality modeling: sensitivity and uncertainty analyses. J Environ Qual 42(6):1684–1698.  https://doi.org/10.2134/jeq2013.04.0120 CrossRefGoogle Scholar
  35. 35.
    Nakhaei N, Etemad-Shahidi A (2012) Applying Monte Carlo and classification tree sensitivity analysis to the Zayandehrood River. J Hydroinformatics 14(1):236–250.  https://doi.org/10.2166/hydro.2011.094 CrossRefGoogle Scholar
  36. 36.
    Olding DD (2000) Algal communities as a biological indicator of stormwater management pond performance and function. Water Qual Res J Can 35(3):489–503Google Scholar
  37. 37.
    Paturi S, Boegman L, Rao YR (2012) Hydrodynamics of eastern Lake Ontario and the upper St. Lawrence River. J Great Lakes Res 38:194–204.  https://doi.org/10.1016/j.jglr.2011.09.008 CrossRefGoogle Scholar
  38. 38.
    Penttilä T, Laurila T (2015) Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas. Boreal Environ Res 20:455–473Google Scholar
  39. 39.
    Rao YR, Marvin CH, Zhao J (2009) Application of a numerical model for circulation, temperature and pollutant distribution in Hamilton Harbour. J Great Lakes Res 35(1):61–73.  https://doi.org/10.1016/j.jglr.2008.09.004 CrossRefGoogle Scholar
  40. 40.
    Reed RK (1977) On estimating insolation over the ocean. J Phys Oceanogr 7(3):482–485.  https://doi.org/10.1175/1520-0485(1977)007%3c0482:OEIOTO%3e2.0.CO;2 CrossRefGoogle Scholar
  41. 41.
    Rouse WR, Oswald CM, Binyamin J, Blanken PD, Schertzer WM, Spence C (2003) Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. J Hydrometeorol 4(4):720–730.  https://doi.org/10.1175/1525-7541(2003)004%3c0720:IASVOT%3e2.0.CO;2 CrossRefGoogle Scholar
  42. 42.
    Rouse WR (2000) The energy and water balance of high-latitude wetlands: controls and extrapolation. Glob Change Biol 6(S1):59–68.  https://doi.org/10.1046/j.1365-2486.2000.06013.x CrossRefGoogle Scholar
  43. 43.
    Siegel A, Cotti-Rausch B, Greenfield DI, Pinckney JL (2011) Nutrient controls of planktonic cyanobacteria biomass in coastal stormwater detention ponds. Mar Ecol Prog Ser 434:15–27.  https://doi.org/10.3354/meps09195 CrossRefGoogle Scholar
  44. 44.
    Strub PT, Powell TM (1987) The exchange coefficients for latent and sensible heat flux over lakes: dependence upon atmospheric stability. Bound-Layer Meteorol 40(4):349–362.  https://doi.org/10.1007/BF00116102 CrossRefGoogle Scholar
  45. 45.
    Sykes JF, Wilson JL, Andrews RW (1985) Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resour Res 21(3):359–371.  https://doi.org/10.1029/WR021i003p00359 CrossRefGoogle Scholar
  46. 46.
    Vega GP, Pena MR, Ramirez C, Mara DD (2003) Application of CFD modelling to study the hydrodynamics of various anaerobic pond configurations. Water Sci Technol 48(2):163–171CrossRefGoogle Scholar
  47. 47.
    Verburg P, Antenucci JP (2010) Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: lake Tanganyika. J Geophys Res Atmos.  https://doi.org/10.1029/2009JD012839 Google Scholar
  48. 48.
    Wakelin SC, Elefsiniotis P, Wareham DG (2003) Assessment of stormwater retention basin water quality in Winnipeg, Canada. Water Qual Res J Can 38(3):433–450CrossRefGoogle Scholar
  49. 49.
    Xing Z, Chua LH, Imberger J (2014) Evaluation of management scenarios for controlling eutrophication in a shallow tropical urban lake. Int J Environ Pollut Remediat 2(2):66–72Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Environmental Fluid Dynamics Laboratory, Department of Civil EngineeringQueen’s UniversityKingstonCanada
  2. 2.Mississippi Valley Conservation Authority (MVCA)Carleton PlaceCanada
  3. 3.Department of Civil and Environmental EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations